Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

The Climate of Early Mars

Abstract

The nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3–4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO2 mean that the steady-state early martian climate was likely cold. A denser CO2 atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-earth-060115-012355
    2016-06-29
    2026-02-16

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/earth/44/1/annurev-earth-060115-012355.html?itemId=/content/journals/10.1146/annurev-earth-060115-012355&mimeType=html&fmt=ahah

    Literature Cited

    1. AcunaM.,ConnerneyJ.,WasilewskiP.,LinR.,AndersonK., et al.1998.. Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission..Science279::167680[Google Scholar]
    2. BaranovYI.,LaffertyWJ.,FraserGT..2004.. Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures..J. Mol. Spectrosc.228::43240[Google Scholar]
    3. BarnhartCJ.,HowardAD.,MooreJM..2009.. Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars..J. Geophys. Res.114::E01003[Google Scholar]
    4. BibringJP.,LangevinY.,GendrinA.,GondetB.,PouletF., et al.2005.. Mars surface diversity as revealed by the OMEGA/Mars Express observations..Science307::157681[Google Scholar]
    5. BibringJP.,LangevinY.,MustardJF.,PouletF.,ArvidsonR., et al.2006.. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data..Science312::4004[Google Scholar]
    6. BoyntonW.,FeldmanW.,SquyresS.,PrettymanT.,BrücknerJ., et al.2002.. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits..Science297::8185[Google Scholar]
    7. BradyPV.,GíslasonSR..1997.. Seafloor weathering controls on atmospheric CO2 and global climate..Geochim. Cosmochim. Acta61::96573[Google Scholar]
    8. BudykoMI..1969.. The effect of solar radiation variations on the climate of the Earth..Tellus21::61119[Google Scholar]
    9. BullockMA.,MooreJM..2007.. Atmospheric conditions on early Mars and the missing layered carbonates..Geophys. Res. Lett.34::L19201[Google Scholar]
    10. CabrolNA.,GrinEA..1999.. Distribution, classification, and ages of martian impact crater lakes..Icarus142::16072[Google Scholar]
    11. CarrMH..1996..Water on Mars. New York:: Oxford Univ. Press[Google Scholar]
    12. CarrMH.,HeadJWIII..2003.. Basal melting of snow on early Mars: a possible origin of some valley networks..Geophys. Res. Lett.30::2245[Google Scholar]
    13. CarrMH.,HeadJWIII..2010.. Geologic history of Mars..Earth Planet. Sci. Lett.294::185203[Google Scholar]
    14. CarrMH.,HeadJWIII..2015.. Martian surface/near-surface water inventory: sources, sinks, and changes with time..Geophys. Res. Lett.42::72632[Google Scholar]
    15. CarterJ.,LoizeauD.,MangoldN.,PouletF.,BibringJP..2015.. Widespread surface weathering on early Mars: a case for a warmer and wetter climate..Icarus248::37382[Google Scholar]
    16. CarterJ.,PouletF.,BibringJP.,MangoldN.,MurchieS..2013.. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view..J. Geophys. Res. Planets118::83158[Google Scholar]
    17. CarterJ.,PouletF.,BibringJP.,MurchieS..2010.. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars..Science328::168286[Google Scholar]
    18. CarySC.,McDonaldIR.,BarrettJE.,CowanDA..2010.. On the rocks: the microbiology of Antarctic Dry Valley soils..Nat. Rev. Microbiol.8::12938[Google Scholar]
    19. CassanelliJP.,HeadJWIII..2015.. Firn densification in a Late Noachian “icy highlands” Mars: implications for ice sheet evolution and thermal response..Icarus253::24355[Google Scholar]
    20. ChambersJE.,WetherillGW..1998.. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions..Icarus136::30427[Google Scholar]
    21. ChassefièreE.,LeblancF..2004.. Mars atmospheric escape and evolution; interaction with the solar wind..Planet. Space Sci.52::103958[Google Scholar]
    22. ChevrierV.,PouletF.,BibringJP..2007.. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates..Nature448::6063[Google Scholar]
    23. ClarkBC.,BairdAK.,RoseHJ.,ToulminP.,KeilK., et al.1976.. Inorganic analyses of Martian surface samples at the viking landing sites..Science194::128388[Google Scholar]
    24. CliffordSM..1993.. A model for the hydrologic and climatic behavior of water on Mars..J. Geophys. Res.98::1097311016[Google Scholar]
    25. CliffordSM.,ParkerTJ..2001.. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains..Icarus154::4079[Google Scholar]
    26. CloughSA.,IaconoMJ.,MoncetJL..1992.. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor..J. Geophys. Res.97::1576185[Google Scholar]
    27. ConnerneyJ.,AcunaM.,WasilewskiP.,KletetschkaG.,NessN., et al.2001.. The global magnetic field of Mars and implications for crustal evolution..Geophys. Res. Lett28::401518[Google Scholar]
    28. CraddockRA.,HowardAD..2002.. The case for rainfall on a warm, wet early Mars..J. Geophys. Res.107::5111[Google Scholar]
    29. DauphasN.,PourmandA..2011.. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo..Nature473::48992[Google Scholar]
    30. D'HondtS.,JørgensenBB.,MillerDJ.,BatzkeA.,BlakeR., et al.2004.. Distributions of microbial activities in deep subseafloor sediments..Science306::221621[Google Scholar]
    31. di AchilleG.,HynekBM..2010.. Ancient ocean on Mars supported by global distribution of deltas and valleys..Nat. Geosci.3::45963[Google Scholar]
    32. EdwardsCS.,EhlmannBL..2015.. Carbon sequestration on Mars..Geology43::86366[Google Scholar]
    33. EhlmannBL.,DundarM..2015.. Are Noachian/Hesperian acidic waters key to generating Mars’ regional-scale aluminum phyllosilicates? The importance of jarosite co-occurrences with Al-phyllosilicate units..Lunar Planet. Sci. Conf. Abstr.46::1635[Google Scholar]
    34. EhlmannBL.,EdwardsCS..2014.. Mineralogy of the martian surface..Annu. Rev. Earth Planet. Sci.42::291315[Google Scholar]
    35. EhlmannBL.,MustardJF.,FassettCI.,SchonSC.,HeadJWIII., et al.2008.. Clay minerals in delta deposits and organic preservation potential on Mars..Nat. Geosci.1::35558[Google Scholar]
    36. EhlmannBL.,MustardJF.,MurchieSL.,BibringJP.,MeunierA., et al.2011.. Subsurface water and clay mineral formation during the early history of Mars..Nature479::5360[Google Scholar]
    37. EhlmannBL.,MustardJF.,SwayzeGA.,ClarkRN.,BishopJL., et al.2009.. Identification of hydrated silicate minerals on mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration..J. Geophys. Res.114::E00D08[Google Scholar]
    38. FairénAG..2010.. A cold and wet Mars..Icarus208::16575[Google Scholar]
    39. FairénAG.,DavilaAF.,Gago-DuportL.,AmilsR.,McKayCP..2009.. Stability against freezing of aqueous solutions on early Mars..Nature459::4014[Google Scholar]
    40. FassettCI.,HeadJWIII..2008.. The timing of martian valley network activity: constraints from buffered crater counting..Icarus195::6189[Google Scholar]
    41. FassettCI.,HeadJWIII..2011.. Sequence and timing of conditions on early Mars..Icarus211::120414[Google Scholar]
    42. FastookJL.,HeadJWIII..2014.. Glaciation in the Late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns..Planet. Space Sci.106::8298[Google Scholar]
    43. FastookJL.,HeadJWIII.,MarchantDR.,ForgetF.,MadeleineJB..2012.. Early Mars climate near the Noachian–Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea formation) and implications for valley network formation..Icarus219::2540[Google Scholar]
    44. ForgetF.,HaberleRM.,MontmessinF.,LevrardB.,HeadJW..2006.. Formation of glaciers on Mars by atmospheric precipitation at high obliquity..Science311::36871[Google Scholar]
    45. ForgetF.,PierrehumbertRT..1997.. Warming early Mars with carbon dioxide clouds that scatter infrared radiation..Science278::127376[Google Scholar]
    46. ForgetF.,WordsworthRD.,MillourE.,MadeleineJB.,KerberL., et al.2013.. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds..Icarus222::8199[Google Scholar]
    47. ForsterP.,RamaswamyV.,ArtaxoP.,BerntsenT.,BettsR., et al.2007.. Changes in atmospheric constituents and in radiative forcing.. InClimate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis , et al., pp.129234. Cambridge, UK:: Cambridge Univ. Press[Google Scholar]
    48. GendrinA.,MangoldN.,BibringJP.,LangevinY.,GondetB., et al.2005.. Sulfates in Martian layered terrains: the OMEGA/Mars Express view..Science307::158791[Google Scholar]
    49. GoodyR.,WestR.,ChenL.,CrispD..1989.. The correlated-k method for radiation calculations in nonhomogeneous atmospheres..J. Quant. Spectrosc. Radiat. Transf.42::53950[Google Scholar]
    50. GoudgeTA.,HeadJW.,MustardJF.,FassettCI..2012.. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes..Icarus219::21129[Google Scholar]
    51. GoughDO..1981.. Solar interior structure and luminosity variations..Solar Phys.74::2134[Google Scholar]
    52. GreenwoodJP.,ItohS.,SakamotoN.,VicenziEP.,YurimotoH..2008.. Hydrogen isotope evidence for loss of water from Mars through time..Geophys. Res. Lett.35::L05203[Google Scholar]
    53. GrottM.,MorschhauserA.,BreuerD.,HauberE..2011.. Volcanic outgassing of CO2 and H2O on Mars..Earth Planet. Sci. Lett.308::391400[Google Scholar]
    54. GrotzingerJP.,GuptaS.,MalinMC.,RubinDM.,SchieberJ., et al.2015.. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars..Science350:. doi: 10.1126/science.aac7575[Google Scholar]
    55. GrotzingerJP.,SumnerDY.,KahLC.,StackK.,GuptaS., et al.2014.. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars..Science343:. doi: 10.1126/science.1242777[Google Scholar]
    56. GruszkaM.,BorysowA..1997.. Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm−1, at temperatures from 200 to 800 K..Icarus129::17277[Google Scholar]
    57. HaberleRM..1998.. Early Mars climate models..J. Geophys. Res.103:(E12):28467[Google Scholar]
    58. HalevyI.,HeadJW..2014.. Episodic warming of early Mars by punctuated volcanism..Nat. Geosci.7::86568[Google Scholar]
    59. HalevyI.,PierrehumbertR.,SchragD..2009.. Radiative transfer in CO2-rich paleoatmospheres..J. Geophys. Res.114::D18112[Google Scholar]
    60. HalevyI.,ZuberMT.,SchragDP..2007.. A sulfur dioxide climate feedback on early Mars..Science318::19037[Google Scholar]
    61. HartmannWK.,NeukumG..2001.. Cratering chronology and the evolution of Mars..Space. Sci. Rev.96::16594[Google Scholar]
    62. HayesJM.,WaldbauerJR..2006.. The carbon cycle and associated redox processes through time..Philos. Trans. R. Soc. B361::93150[Google Scholar]
    63. HeadJWIII.,HiesingerH.,IvanovMA.,KreslavskyMA.,PrattS.,ThomsonBJ..1999.. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data..Science286::213437[Google Scholar]
    64. HeadJWIII.,KreslavskyMA.,PrattS..2002.. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period..J. Geophys. Res.107:(E1):5004[Google Scholar]
    65. HeadJWIII.,MarchantDR..2014.. The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system..Antarct. Sci.26::774800[Google Scholar]
    66. HeadJWIII.,PrattS..2001.. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater..J. Geophys. Res.106:(E6):12275300[Google Scholar]
    67. HirschmannMM.,WithersAC..2008.. Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse..Earth Planet. Sci. Lett.270::14755[Google Scholar]
    68. HoffmanPF.,KaufmanAJ.,HalversonGP.,SchragDP..1998.. A Neoproterozoic snowball Earth..Science281::134246[Google Scholar]
    69. HokeMRT.,HynekBM.,TuckerGE..2011.. Formation timescales of large Martian valley networks..Earth Planet. Sci. Lett.312::112[Google Scholar]
    70. HowardAD..1981.. Etched plains and braided ridges of the south polar region of Mars: features produced by basal melting of ground ice?. InReports of Planetary Geology Program—1981, ed. HE Holt, pp.28688. NASA Tech. Memo. 84211. Washington, DC:: NASA[Google Scholar]
    71. HowardAD.,MooreJM.,IrwinRPIII..2005.. An intense terminal epoch of widespread fluvial activity on early Mars. 1. Valley network incision and associated deposits..J. Geophys. Res.110::E12S14[Google Scholar]
    72. HynekBM.,BeachM.,HokeMRT..2010.. Updated global map of Martian valley networks and implications for climate and hydrologic processes..J. Geophys. Res.115::E09008[Google Scholar]
    73. IrwinRPIII.,HowardAD.,CraddockRA.,MooreJM..2005.. An intense terminal epoch of widespread fluvial activity on early Mars. 2. Increased runoff and paleolake development..J. Geophys. Res.110::E12S15[Google Scholar]
    74. JakoskyBM.,JonesJH..1997.. The history of Martian volatiles..Rev. Geophys.35::116[Google Scholar]
    75. JohnsonSS.,MischnaMA.,GroveTL.,ZuberMT..2008.. Sulfur-induced greenhouse warming on early Mars..J. Geophys. Res.113::E08005[Google Scholar]
    76. JohnsonSS.,PavlovAA.,MischnaMA..2009.. Fate of SO2 in the ancient martian atmosphere: implications for transient greenhouse warming..J. Geophys. Res.114::E11011[Google Scholar]
    77. KahreMA.,VinesSK.,HaberleRM.,HollingsworthJL..2013.. The early Martian atmosphere: investigating the role of the dust cycle in the possible maintenance of two stable climate states..J. Geophys. Res. Planets118::138896[Google Scholar]
    78. KargelJS.,StromRG..1992.. Ancient glaciation on Mars..Geology20::37[Google Scholar]
    79. KastingJF..1991.. CO2 condensation and the climate of early Mars..Icarus94::113[Google Scholar]
    80. KastingJF..1997.. Warming early Earth and Mars..Science276::1213[Google Scholar]
    81. KastingJF.,WhitmireDP.,ReynoldsRT..1993.. Habitable zones around main sequence stars..Icarus101::10828[Google Scholar]
    82. KerberL.,ForgetF.,WordsworthRD..2015.. Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model..Icarus261::13348[Google Scholar]
    83. KhairoutdinovMF.,RandallDA..2001.. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: preliminary results..Geophys. Res. Lett.28::361720[Google Scholar]
    84. KirschvinkJL..1992.. Late Proterozoic low-latitude global glaciation: the snowball Earth.. InThe Proterozoic Biosphere: A Multidisciplinary Study, ed. JW Schopf, C Klein, pp.5152. New York:: Cambridge Univ. Press[Google Scholar]
    85. KirschvinkJL.,WeissBP..2002.. Mars, panspermia, and the origin of life: Where did it all begin?.Palaeontol. Electron.4::815[Google Scholar]
    86. KiteES.,HalevyI.,KahreMA.,WolffMJ.,MangaM..2013.. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound..Icarus223::181210[Google Scholar]
    87. KiteES.,WilliamsJP.,LucasA.,AharonsonO..2014.. Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters..Nat. Geosci.7::33539[Google Scholar]
    88. KitzmannD.,PatzerABC.,RauerH..2013.. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: numerical radiative transfer studies..Astron. Astrophys.557::A6[Google Scholar]
    89. LacisAA.,OinasV..1991.. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres..J. Geophys. Res96:(D5):902764[Google Scholar]
    90. LammerH.,ChassefièreE.,KaratekinÖ.,MorschhauserA.,NilesPB., et al.2013.. Outgassing history and escape of the martian atmosphere and water inventory..Space Sci. Rev.174::11354[Google Scholar]
    91. LammerH.,SelsisF.,RibasI.,GuinanEF.,BauerSJ.,WeissWW..2003.. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating..Astrophys. J.598::L12124[Google Scholar]
    92. LaskarJ.,CorreiaACM.,GastineauM.,JoutelF.,LevrardB.,RobutelP..2004.. Long term evolution and chaotic diffusion of the insolation quantities of Mars..Icarus170::34364[Google Scholar]
    93. LaskarJ.,RobutelP..1993.. The chaotic obliquity of the planets..Nature361::60812[Google Scholar]
    94. LeovyC.,MintzY..1969.. Numerical simulation of the atmospheric circulation and climate of Mars..J. Atmos. Sci.26::116790[Google Scholar]
    95. MadeleineJB.,ForgetF.,HeadJW.,LevrardB.,MontmessinF.,MillourE..2009.. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario..Icarus203::390405[Google Scholar]
    96. MalinMC.,EdgettKS..1999.. Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines..Geophys. Res. Lett.26::304952[Google Scholar]
    97. MalinMC.,EdgettKS..2003.. Evidence for persistent flow and aqueous sedimentation on early Mars..Science302::193134[Google Scholar]
    98. MangoldN.,QuantinC.,AnsanV.,DelacourtC.,AllemandP..2004.. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area..Science305::7881[Google Scholar]
    99. MartyB..2012.. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth..Earth Planet. Sci. Lett.313::5666[Google Scholar]
    100. MatsubaraY.,HowardAD.,GochenourJP..2013.. Hydrology of early Mars: valley network incision..J. Geophys. Res. Planets118::136587[Google Scholar]
    101. MichalskiJR.,NilesPB..2010.. Deep crustal carbonate rocks exposed by meteor impact on Mars..Nat. Geosci.3::75155[Google Scholar]
    102. MileikowskyC.,CucinottaFA.,WilsonJW.,GladmanB.,HorneckG., et al.2000.. Natural transfer of viable microbes in space. 1. From Mars to Earth and Earth to Mars..Icarus145::391427[Google Scholar]
    103. MiltonDJ..1973.. Water and processes of degradation in the Martian landscape..J. Geophys. Res.78::403747[Google Scholar]
    104. MintonDA.,MalhotraR..2007.. Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle..Astrophys. J.660::1700[Google Scholar]
    105. MischnaMA.,BakerV.,MillikenR.,RichardsonM.,LeeC..2013.. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate..J. Geophys. Res. Planets118::56076[Google Scholar]
    106. MischnaMA.,RichardsonMI.,WilsonRJ.,McCleeseDJ..2003.. On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes..J. Geophys. Res.108:(E6):5062[Google Scholar]
    107. MontmessinF.,GondetB.,BibringJ.,LangevinY.,DrossartP., et al.2007.. Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars..J. Geophys. Res.112::E11S90[Google Scholar]
    108. MorrisRV.,RuffSW.,GellertR.,MingDW.,ArvidsonRE., et al.2010.. Identification of carbonate-rich outcrops on Mars by the Spirit rover..Science329::42124[Google Scholar]
    109. MurchieSL.,MustardJF.,EhlmannBL.,MillikenRE.,BishopJL., et al.2009.. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter..J. Geophys. Res.114::E00D06[Google Scholar]
    110. MustardJF.,MurchieSL.,PelkeySM.,EhlmannBL.,MillikenRE., et al.2008.. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument..Nature454::3059[Google Scholar]
    111. NakajimaS.,HayashiYY.,AbeY..1992.. A study on the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model..J. Atmos. Sci49::225666[Google Scholar]
    112. NilesPB.,CatlingDC.,BergerG.,ChassefièreE.,EhlmannBL., et al.2013.. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments..Space Sci. Rev.174::30128[Google Scholar]
    113. NimmoF.,TanakaK..2005.. Early crustal evolution of Mars..Annu. Rev. Earth Planet. Sci.33::13361[Google Scholar]
    114. OsterlooMM.,AndersonFS.,HamiltonVE.,HynekBM..2010.. Geologic context of proposed chloride-bearing materials on Mars..J. Geophys. Res.115::E10012[Google Scholar]
    115. ParkerTJ.,GorslineDS.,SaundersRS.,PieriDC.,SchneebergerDM..1993.. Coastal geomorphology of the Martian northern plains..J. Geophys. Res.98:(E6):1106178[Google Scholar]
    116. PerrinMY.,HartmannJM..1989.. Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band..J. Quant. Spectrosc. Radiat. Transf.42::31117[Google Scholar]
    117. PerronJT.,MitrovicaJX.,MangaM.,MatsuyamaI.,RichardsMA..2007.. Evidence for an ancient martian ocean in the topography of deformed shorelines..Nature447::84043[Google Scholar]
    118. PhillipsRJ.,ZuberMT.,SolomonSC.,GolombekMP.,JakoskyBM., et al.2001.. Ancient geodynamics and global-scale hydrology on Mars..Science291::258791[Google Scholar]
    119. PierrehumbertRT.,AbbotDS.,VoigtA.,KollD..2011.. Climate of the Neoproterozoic..Annu. Rev. Earth Planet. Sci.39::41760[Google Scholar]
    120. PollackJB.,KastingJF.,RichardsonSM.,PoliakoffK..1987.. The case for a wet, warm climate on early Mars..Icarus71::20324[Google Scholar]
    121. PostawkoSE.,KuhnWR..1986.. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate..J. Geophys. Res.91:(D4):43138[Google Scholar]
    122. PouletF.,BibringJP.,MustardJF.,GendrinA.,MangoldN., et al.2005.. Phyllosilicates on Mars and implications for early martian climate..Nature438::62327[Google Scholar]
    123. QuintanaEV.,BarclayT.,RaymondSN.,RoweJF.,BolmontE., et al.2014.. An Earth-sized planet in the habitable zone of a cool star..Science344::27780[Google Scholar]
    124. RamirezRM.,KopparapuR.,ZuggerME.,RobinsonTD.,FreedmanR.,KastingJF..2014.. Warming early mars with CO2 and H2..Nat. Geosci.7::5963[Google Scholar]
    125. RichardsonMI.,MischnaMA..2005.. Long-term evolution of transient liquid water on Mars..J. Geophys. Res.110::E03003[Google Scholar]
    126. SaganC..1977.. Reducing greenhouses and the temperature history of Earth and Mars..Nature269::22426[Google Scholar]
    127. ScanlonKE.,HeadJW.,MadeleineJB.,WordsworthRD.,ForgetF..2013.. Orographic precipitation in valley network headwaters: constraints on the ancient Martian atmosphere..Geophys. Res. Lett.40::418287[Google Scholar]
    128. ScottDH.,TanakaKL..1986..Geologic map of the western equatorial region of Mars. Geol. Investig. Ser. Map I-1802-A, US Geol. Surv., Reston, VA:[Google Scholar]
    129. SeguraTL.,McKayCP.,ToonOB..2012.. An impact-induced, stable, runaway climate on Mars..Icarus220::14448[Google Scholar]
    130. SeguraTL.,ToonOB.,ColapreteA..2008.. Modeling the environmental effects of moderate-sized impacts on Mars..J. Geophys. Res.113:E11007[Google Scholar]
    131. SeguraTL.,ToonOB.,ColapreteA.,ZahnleK..2002.. Environmental effects of large impacts on Mars..Science298::197780[Google Scholar]
    132. SleepNH.,ZahnleK..2001.. Carbon dioxide cycling and implications for climate on ancient Earth..J. Geophys. Res.106:(E1):1373400[Google Scholar]
    133. SolomonSC.,AharonsonO.,AurnouJM.,BanerdtWB.,CarrMH., et al.2005.. New perspectives on ancient Mars..Science307::121420[Google Scholar]
    134. SotoA.,MischnaM.,SchneiderT.,LeeC.,RichardsonM..2015.. Martian atmospheric collapse: idealized GCM studies..Icarus250::55369[Google Scholar]
    135. SquyresSW.,KastingJF..1994.. Early Mars: how warm and how wet?.Science265::74449[Google Scholar]
    136. StenchikovGL.,KirchnerI.,RobockA.,GrafHF.,AntunaJC., et al.1998.. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption..J. Geophys. Res.103:(D12):1383757[Google Scholar]
    137. StepinskiTF.,StepinskiAP..2005.. Morphology of drainage basins as an indicator of climate on early Mars..J. Geophys. Res.110::E12S12[Google Scholar]
    138. StroeveJ.,HollandMM.,MeierW.,ScambosT.,SerrezeM..2007.. Arctic sea ice decline: faster than forecast..Geophys. Res. Lett.34::L09501[Google Scholar]
    139. TanakaKL..1986.. The stratigraphy of Mars..J. Geophys. Res.91:(B13):E13958[Google Scholar]
    140. TanakaKL.,ScottDH..1987..Geologic map of the polar regions of Mars. Sci. Investig. Map 3177, US Geol. Surv., Reston, VA:[Google Scholar]
    141. TanakaKL.,SkinnerJA.,DohmJM.,IrwinRPIII.,KolbEJ., et al.2014..Geologic map of Mars. Sci. Investig. Map 3292, US Geol. Surv., Reston, VA:[Google Scholar]
    142. TianF.,ClaireMW.,Haqq-MisraJD.,SmithM.,CrispDC., et al.2010.. Photochemical and climate consequences of sulfur outgassing on early Mars..Earth Planet. Sci. Lett.295::41218[Google Scholar]
    143. ToonOB.,SeguraT.,ZahnleK..2010.. The formation of Martian river valleys by impacts..Annu. Rev. Earth Planet. Sci.38::30322[Google Scholar]
    144. ToscaNJ.,KnollAH..2009.. Juvenile chemical sediments and the long term persistence of water at the surface of Mars..Earth Planet. Sci. Lett.286::37986[Google Scholar]
    145. UdryS.,BonfilsX.,DelfosseX.,ForveilleT.,MayorM., et al.2007.. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8M) in a 3-planet system..Astron. Astrophys.469::L4347[Google Scholar]
    146. UrataRA.,ToonOB..2013.. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate..Icarus226::22950[Google Scholar]
    147. VillanuevaG.,MummaM.,NovakR.,KäuflH.,HartoghP., et al.2015.. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs..Science348::21821[Google Scholar]
    148. von ParisP.,GrenfellJL.,RauerH.,StockJW..2013.. N2-associated surface warming on early Mars..Planet. Space Sci.82::14954[Google Scholar]
    149. WadhwaM..2001.. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes..Science291::152730[Google Scholar]
    150. WalkerJCG.,HayesPB.,KastingJF..1981.. A negative feedback mechanism for the long-term stabilization of the Earth's surface temperature..J. Geophys. Res.86:(C10):977682[Google Scholar]
    151. WalshKJ.,MorbidelliA.,RaymondSN.,O'BrienDP.,MandellAM..2011.. A low mass for Mars from Jupiter's early gas-driven migration..Nature475::2069[Google Scholar]
    152. WebsterCR.,MahaffyPR.,FleschGJ.,NilesPB.,JonesJH., et al.2013.. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere..Science341::26063[Google Scholar]
    153. WernerSC.,TanakaKL..2011.. Redefinition of the crater-density and absolute-age boundaries for the chrono-stratigraphic system of Mars..Icarus215::6037[Google Scholar]
    154. WilliamsRME.,GrotzingerJP.,DietrichWE.,GuptaS.,SumnerDY., et al.2013.. Martian fluvial conglomerates at Gale Crater..Science340::106872[Google Scholar]
    155. WordsworthR.,ForgetF.,EymetV..2010.. Infrared collision-induced and far-line absorption in dense CO2 atmospheres..Icarus210::99297[Google Scholar]
    156. WordsworthR.,ForgetF.,MillourE.,HeadJW.,MadeleineJB.,CharnayB..2013.. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution..Icarus222::119[Google Scholar]
    157. WordsworthR.,KerberL.,PierrehumbertR.,ForgetF.,HeadJWIII..2015.. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3D climate model..J. Geophys. Res. Planets120::120119[Google Scholar]
    158. WordsworthR.,PierrehumbertR..2013.. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere..Science339::6467[Google Scholar]
    159. WrayJ.,EhlmannB.,SquyresS.,MustardJ.,KirkR..2008.. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars..Geophys. Res. Lett.35::L12202[Google Scholar]
    160. YungYL.,NairH.,GerstellMF..1997.. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation..Icarus130::22224[Google Scholar]
    /content/journals/10.1146/annurev-earth-060115-012355
    Loading
    The Climate of Early Mars
    Annual Review of Earth and Planetary Sciences44, 381 (2016);https://doi.org/10.1146/annurev-earth-060115-012355
    /content/journals/10.1146/annurev-earth-060115-012355
    /content/journals/10.1146/annurev-earth-060115-012355
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/earth
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-earth-060115-012355
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AcunaM.,ConnerneyJ.,WasilewskiP.,LinR.,AndersonK., et al.1998.. Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission..Science279::167680[Google Scholar]
    2. BaranovYI.,LaffertyWJ.,FraserGT..2004.. Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures..J. Mol. Spectrosc.228::43240[Google Scholar]
    3. BarnhartCJ.,HowardAD.,MooreJM..2009.. Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars..J. Geophys. Res.114::E01003[Google Scholar]
    4. BibringJP.,LangevinY.,GendrinA.,GondetB.,PouletF., et al.2005.. Mars surface diversity as revealed by the OMEGA/Mars Express observations..Science307::157681[Google Scholar]
    5. BibringJP.,LangevinY.,MustardJF.,PouletF.,ArvidsonR., et al.2006.. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data..Science312::4004[Google Scholar]
    6. BoyntonW.,FeldmanW.,SquyresS.,PrettymanT.,BrücknerJ., et al.2002.. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits..Science297::8185[Google Scholar]
    7. BradyPV.,GíslasonSR..1997.. Seafloor weathering controls on atmospheric CO2 and global climate..Geochim. Cosmochim. Acta61::96573[Google Scholar]
    8. BudykoMI..1969.. The effect of solar radiation variations on the climate of the Earth..Tellus21::61119[Google Scholar]
    9. BullockMA.,MooreJM..2007.. Atmospheric conditions on early Mars and the missing layered carbonates..Geophys. Res. Lett.34::L19201[Google Scholar]
    10. CabrolNA.,GrinEA..1999.. Distribution, classification, and ages of martian impact crater lakes..Icarus142::16072[Google Scholar]
    11. CarrMH..1996..Water on Mars. New York:: Oxford Univ. Press[Google Scholar]
    12. CarrMH.,HeadJWIII..2003.. Basal melting of snow on early Mars: a possible origin of some valley networks..Geophys. Res. Lett.30::2245[Google Scholar]
    13. CarrMH.,HeadJWIII..2010.. Geologic history of Mars..Earth Planet. Sci. Lett.294::185203[Google Scholar]
    14. CarrMH.,HeadJWIII..2015.. Martian surface/near-surface water inventory: sources, sinks, and changes with time..Geophys. Res. Lett.42::72632[Google Scholar]
    15. CarterJ.,LoizeauD.,MangoldN.,PouletF.,BibringJP..2015.. Widespread surface weathering on early Mars: a case for a warmer and wetter climate..Icarus248::37382[Google Scholar]
    16. CarterJ.,PouletF.,BibringJP.,MangoldN.,MurchieS..2013.. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view..J. Geophys. Res. Planets118::83158[Google Scholar]
    17. CarterJ.,PouletF.,BibringJP.,MurchieS..2010.. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars..Science328::168286[Google Scholar]
    18. CarySC.,McDonaldIR.,BarrettJE.,CowanDA..2010.. On the rocks: the microbiology of Antarctic Dry Valley soils..Nat. Rev. Microbiol.8::12938[Google Scholar]
    19. CassanelliJP.,HeadJWIII..2015.. Firn densification in a Late Noachian “icy highlands” Mars: implications for ice sheet evolution and thermal response..Icarus253::24355[Google Scholar]
    20. ChambersJE.,WetherillGW..1998.. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions..Icarus136::30427[Google Scholar]
    21. ChassefièreE.,LeblancF..2004.. Mars atmospheric escape and evolution; interaction with the solar wind..Planet. Space Sci.52::103958[Google Scholar]
    22. ChevrierV.,PouletF.,BibringJP..2007.. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates..Nature448::6063[Google Scholar]
    23. ClarkBC.,BairdAK.,RoseHJ.,ToulminP.,KeilK., et al.1976.. Inorganic analyses of Martian surface samples at the viking landing sites..Science194::128388[Google Scholar]
    24. CliffordSM..1993.. A model for the hydrologic and climatic behavior of water on Mars..J. Geophys. Res.98::1097311016[Google Scholar]
    25. CliffordSM.,ParkerTJ..2001.. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains..Icarus154::4079[Google Scholar]
    26. CloughSA.,IaconoMJ.,MoncetJL..1992.. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor..J. Geophys. Res.97::1576185[Google Scholar]
    27. ConnerneyJ.,AcunaM.,WasilewskiP.,KletetschkaG.,NessN., et al.2001.. The global magnetic field of Mars and implications for crustal evolution..Geophys. Res. Lett28::401518[Google Scholar]
    28. CraddockRA.,HowardAD..2002.. The case for rainfall on a warm, wet early Mars..J. Geophys. Res.107::5111[Google Scholar]
    29. DauphasN.,PourmandA..2011.. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo..Nature473::48992[Google Scholar]
    30. D'HondtS.,JørgensenBB.,MillerDJ.,BatzkeA.,BlakeR., et al.2004.. Distributions of microbial activities in deep subseafloor sediments..Science306::221621[Google Scholar]
    31. di AchilleG.,HynekBM..2010.. Ancient ocean on Mars supported by global distribution of deltas and valleys..Nat. Geosci.3::45963[Google Scholar]
    32. EdwardsCS.,EhlmannBL..2015.. Carbon sequestration on Mars..Geology43::86366[Google Scholar]
    33. EhlmannBL.,DundarM..2015.. Are Noachian/Hesperian acidic waters key to generating Mars’ regional-scale aluminum phyllosilicates? The importance of jarosite co-occurrences with Al-phyllosilicate units..Lunar Planet. Sci. Conf. Abstr.46::1635[Google Scholar]
    34. EhlmannBL.,EdwardsCS..2014.. Mineralogy of the martian surface..Annu. Rev. Earth Planet. Sci.42::291315[Google Scholar]
    35. EhlmannBL.,MustardJF.,FassettCI.,SchonSC.,HeadJWIII., et al.2008.. Clay minerals in delta deposits and organic preservation potential on Mars..Nat. Geosci.1::35558[Google Scholar]
    36. EhlmannBL.,MustardJF.,MurchieSL.,BibringJP.,MeunierA., et al.2011.. Subsurface water and clay mineral formation during the early history of Mars..Nature479::5360[Google Scholar]
    37. EhlmannBL.,MustardJF.,SwayzeGA.,ClarkRN.,BishopJL., et al.2009.. Identification of hydrated silicate minerals on mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration..J. Geophys. Res.114::E00D08[Google Scholar]
    38. FairénAG..2010.. A cold and wet Mars..Icarus208::16575[Google Scholar]
    39. FairénAG.,DavilaAF.,Gago-DuportL.,AmilsR.,McKayCP..2009.. Stability against freezing of aqueous solutions on early Mars..Nature459::4014[Google Scholar]
    40. FassettCI.,HeadJWIII..2008.. The timing of martian valley network activity: constraints from buffered crater counting..Icarus195::6189[Google Scholar]
    41. FassettCI.,HeadJWIII..2011.. Sequence and timing of conditions on early Mars..Icarus211::120414[Google Scholar]
    42. FastookJL.,HeadJWIII..2014.. Glaciation in the Late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns..Planet. Space Sci.106::8298[Google Scholar]
    43. FastookJL.,HeadJWIII.,MarchantDR.,ForgetF.,MadeleineJB..2012.. Early Mars climate near the Noachian–Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea formation) and implications for valley network formation..Icarus219::2540[Google Scholar]
    44. ForgetF.,HaberleRM.,MontmessinF.,LevrardB.,HeadJW..2006.. Formation of glaciers on Mars by atmospheric precipitation at high obliquity..Science311::36871[Google Scholar]
    45. ForgetF.,PierrehumbertRT..1997.. Warming early Mars with carbon dioxide clouds that scatter infrared radiation..Science278::127376[Google Scholar]
    46. ForgetF.,WordsworthRD.,MillourE.,MadeleineJB.,KerberL., et al.2013.. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds..Icarus222::8199[Google Scholar]
    47. ForsterP.,RamaswamyV.,ArtaxoP.,BerntsenT.,BettsR., et al.2007.. Changes in atmospheric constituents and in radiative forcing.. InClimate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis , et al., pp.129234. Cambridge, UK:: Cambridge Univ. Press[Google Scholar]
    48. GendrinA.,MangoldN.,BibringJP.,LangevinY.,GondetB., et al.2005.. Sulfates in Martian layered terrains: the OMEGA/Mars Express view..Science307::158791[Google Scholar]
    49. GoodyR.,WestR.,ChenL.,CrispD..1989.. The correlated-k method for radiation calculations in nonhomogeneous atmospheres..J. Quant. Spectrosc. Radiat. Transf.42::53950[Google Scholar]
    50. GoudgeTA.,HeadJW.,MustardJF.,FassettCI..2012.. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes..Icarus219::21129[Google Scholar]
    51. GoughDO..1981.. Solar interior structure and luminosity variations..Solar Phys.74::2134[Google Scholar]
    52. GreenwoodJP.,ItohS.,SakamotoN.,VicenziEP.,YurimotoH..2008.. Hydrogen isotope evidence for loss of water from Mars through time..Geophys. Res. Lett.35::L05203[Google Scholar]
    53. GrottM.,MorschhauserA.,BreuerD.,HauberE..2011.. Volcanic outgassing of CO2 and H2O on Mars..Earth Planet. Sci. Lett.308::391400[Google Scholar]
    54. GrotzingerJP.,GuptaS.,MalinMC.,RubinDM.,SchieberJ., et al.2015.. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars..Science350:. doi: 10.1126/science.aac7575[Google Scholar]
    55. GrotzingerJP.,SumnerDY.,KahLC.,StackK.,GuptaS., et al.2014.. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars..Science343:. doi: 10.1126/science.1242777[Google Scholar]
    56. GruszkaM.,BorysowA..1997.. Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm−1, at temperatures from 200 to 800 K..Icarus129::17277[Google Scholar]
    57. HaberleRM..1998.. Early Mars climate models..J. Geophys. Res.103:(E12):28467[Google Scholar]
    58. HalevyI.,HeadJW..2014.. Episodic warming of early Mars by punctuated volcanism..Nat. Geosci.7::86568[Google Scholar]
    59. HalevyI.,PierrehumbertR.,SchragD..2009.. Radiative transfer in CO2-rich paleoatmospheres..J. Geophys. Res.114::D18112[Google Scholar]
    60. HalevyI.,ZuberMT.,SchragDP..2007.. A sulfur dioxide climate feedback on early Mars..Science318::19037[Google Scholar]
    61. HartmannWK.,NeukumG..2001.. Cratering chronology and the evolution of Mars..Space. Sci. Rev.96::16594[Google Scholar]
    62. HayesJM.,WaldbauerJR..2006.. The carbon cycle and associated redox processes through time..Philos. Trans. R. Soc. B361::93150[Google Scholar]
    63. HeadJWIII.,HiesingerH.,IvanovMA.,KreslavskyMA.,PrattS.,ThomsonBJ..1999.. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data..Science286::213437[Google Scholar]
    64. HeadJWIII.,KreslavskyMA.,PrattS..2002.. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period..J. Geophys. Res.107:(E1):5004[Google Scholar]
    65. HeadJWIII.,MarchantDR..2014.. The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system..Antarct. Sci.26::774800[Google Scholar]
    66. HeadJWIII.,PrattS..2001.. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater..J. Geophys. Res.106:(E6):12275300[Google Scholar]
    67. HirschmannMM.,WithersAC..2008.. Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse..Earth Planet. Sci. Lett.270::14755[Google Scholar]
    68. HoffmanPF.,KaufmanAJ.,HalversonGP.,SchragDP..1998.. A Neoproterozoic snowball Earth..Science281::134246[Google Scholar]
    69. HokeMRT.,HynekBM.,TuckerGE..2011.. Formation timescales of large Martian valley networks..Earth Planet. Sci. Lett.312::112[Google Scholar]
    70. HowardAD..1981.. Etched plains and braided ridges of the south polar region of Mars: features produced by basal melting of ground ice?. InReports of Planetary Geology Program—1981, ed. HE Holt, pp.28688. NASA Tech. Memo. 84211. Washington, DC:: NASA[Google Scholar]
    71. HowardAD.,MooreJM.,IrwinRPIII..2005.. An intense terminal epoch of widespread fluvial activity on early Mars. 1. Valley network incision and associated deposits..J. Geophys. Res.110::E12S14[Google Scholar]
    72. HynekBM.,BeachM.,HokeMRT..2010.. Updated global map of Martian valley networks and implications for climate and hydrologic processes..J. Geophys. Res.115::E09008[Google Scholar]
    73. IrwinRPIII.,HowardAD.,CraddockRA.,MooreJM..2005.. An intense terminal epoch of widespread fluvial activity on early Mars. 2. Increased runoff and paleolake development..J. Geophys. Res.110::E12S15[Google Scholar]
    74. JakoskyBM.,JonesJH..1997.. The history of Martian volatiles..Rev. Geophys.35::116[Google Scholar]
    75. JohnsonSS.,MischnaMA.,GroveTL.,ZuberMT..2008.. Sulfur-induced greenhouse warming on early Mars..J. Geophys. Res.113::E08005[Google Scholar]
    76. JohnsonSS.,PavlovAA.,MischnaMA..2009.. Fate of SO2 in the ancient martian atmosphere: implications for transient greenhouse warming..J. Geophys. Res.114::E11011[Google Scholar]
    77. KahreMA.,VinesSK.,HaberleRM.,HollingsworthJL..2013.. The early Martian atmosphere: investigating the role of the dust cycle in the possible maintenance of two stable climate states..J. Geophys. Res. Planets118::138896[Google Scholar]
    78. KargelJS.,StromRG..1992.. Ancient glaciation on Mars..Geology20::37[Google Scholar]
    79. KastingJF..1991.. CO2 condensation and the climate of early Mars..Icarus94::113[Google Scholar]
    80. KastingJF..1997.. Warming early Earth and Mars..Science276::1213[Google Scholar]
    81. KastingJF.,WhitmireDP.,ReynoldsRT..1993.. Habitable zones around main sequence stars..Icarus101::10828[Google Scholar]
    82. KerberL.,ForgetF.,WordsworthRD..2015.. Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model..Icarus261::13348[Google Scholar]
    83. KhairoutdinovMF.,RandallDA..2001.. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: preliminary results..Geophys. Res. Lett.28::361720[Google Scholar]
    84. KirschvinkJL..1992.. Late Proterozoic low-latitude global glaciation: the snowball Earth.. InThe Proterozoic Biosphere: A Multidisciplinary Study, ed. JW Schopf, C Klein, pp.5152. New York:: Cambridge Univ. Press[Google Scholar]
    85. KirschvinkJL.,WeissBP..2002.. Mars, panspermia, and the origin of life: Where did it all begin?.Palaeontol. Electron.4::815[Google Scholar]
    86. KiteES.,HalevyI.,KahreMA.,WolffMJ.,MangaM..2013.. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound..Icarus223::181210[Google Scholar]
    87. KiteES.,WilliamsJP.,LucasA.,AharonsonO..2014.. Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters..Nat. Geosci.7::33539[Google Scholar]
    88. KitzmannD.,PatzerABC.,RauerH..2013.. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: numerical radiative transfer studies..Astron. Astrophys.557::A6[Google Scholar]
    89. LacisAA.,OinasV..1991.. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres..J. Geophys. Res96:(D5):902764[Google Scholar]
    90. LammerH.,ChassefièreE.,KaratekinÖ.,MorschhauserA.,NilesPB., et al.2013.. Outgassing history and escape of the martian atmosphere and water inventory..Space Sci. Rev.174::11354[Google Scholar]
    91. LammerH.,SelsisF.,RibasI.,GuinanEF.,BauerSJ.,WeissWW..2003.. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating..Astrophys. J.598::L12124[Google Scholar]
    92. LaskarJ.,CorreiaACM.,GastineauM.,JoutelF.,LevrardB.,RobutelP..2004.. Long term evolution and chaotic diffusion of the insolation quantities of Mars..Icarus170::34364[Google Scholar]
    93. LaskarJ.,RobutelP..1993.. The chaotic obliquity of the planets..Nature361::60812[Google Scholar]
    94. LeovyC.,MintzY..1969.. Numerical simulation of the atmospheric circulation and climate of Mars..J. Atmos. Sci.26::116790[Google Scholar]
    95. MadeleineJB.,ForgetF.,HeadJW.,LevrardB.,MontmessinF.,MillourE..2009.. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario..Icarus203::390405[Google Scholar]
    96. MalinMC.,EdgettKS..1999.. Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines..Geophys. Res. Lett.26::304952[Google Scholar]
    97. MalinMC.,EdgettKS..2003.. Evidence for persistent flow and aqueous sedimentation on early Mars..Science302::193134[Google Scholar]
    98. MangoldN.,QuantinC.,AnsanV.,DelacourtC.,AllemandP..2004.. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area..Science305::7881[Google Scholar]
    99. MartyB..2012.. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth..Earth Planet. Sci. Lett.313::5666[Google Scholar]
    100. MatsubaraY.,HowardAD.,GochenourJP..2013.. Hydrology of early Mars: valley network incision..J. Geophys. Res. Planets118::136587[Google Scholar]
    101. MichalskiJR.,NilesPB..2010.. Deep crustal carbonate rocks exposed by meteor impact on Mars..Nat. Geosci.3::75155[Google Scholar]
    102. MileikowskyC.,CucinottaFA.,WilsonJW.,GladmanB.,HorneckG., et al.2000.. Natural transfer of viable microbes in space. 1. From Mars to Earth and Earth to Mars..Icarus145::391427[Google Scholar]
    103. MiltonDJ..1973.. Water and processes of degradation in the Martian landscape..J. Geophys. Res.78::403747[Google Scholar]
    104. MintonDA.,MalhotraR..2007.. Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle..Astrophys. J.660::1700[Google Scholar]
    105. MischnaMA.,BakerV.,MillikenR.,RichardsonM.,LeeC..2013.. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate..J. Geophys. Res. Planets118::56076[Google Scholar]
    106. MischnaMA.,RichardsonMI.,WilsonRJ.,McCleeseDJ..2003.. On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes..J. Geophys. Res.108:(E6):5062[Google Scholar]
    107. MontmessinF.,GondetB.,BibringJ.,LangevinY.,DrossartP., et al.2007.. Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars..J. Geophys. Res.112::E11S90[Google Scholar]
    108. MorrisRV.,RuffSW.,GellertR.,MingDW.,ArvidsonRE., et al.2010.. Identification of carbonate-rich outcrops on Mars by the Spirit rover..Science329::42124[Google Scholar]
    109. MurchieSL.,MustardJF.,EhlmannBL.,MillikenRE.,BishopJL., et al.2009.. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter..J. Geophys. Res.114::E00D06[Google Scholar]
    110. MustardJF.,MurchieSL.,PelkeySM.,EhlmannBL.,MillikenRE., et al.2008.. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument..Nature454::3059[Google Scholar]
    111. NakajimaS.,HayashiYY.,AbeY..1992.. A study on the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model..J. Atmos. Sci49::225666[Google Scholar]
    112. NilesPB.,CatlingDC.,BergerG.,ChassefièreE.,EhlmannBL., et al.2013.. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments..Space Sci. Rev.174::30128[Google Scholar]
    113. NimmoF.,TanakaK..2005.. Early crustal evolution of Mars..Annu. Rev. Earth Planet. Sci.33::13361[Google Scholar]
    114. OsterlooMM.,AndersonFS.,HamiltonVE.,HynekBM..2010.. Geologic context of proposed chloride-bearing materials on Mars..J. Geophys. Res.115::E10012[Google Scholar]
    115. ParkerTJ.,GorslineDS.,SaundersRS.,PieriDC.,SchneebergerDM..1993.. Coastal geomorphology of the Martian northern plains..J. Geophys. Res.98:(E6):1106178[Google Scholar]
    116. PerrinMY.,HartmannJM..1989.. Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band..J. Quant. Spectrosc. Radiat. Transf.42::31117[Google Scholar]
    117. PerronJT.,MitrovicaJX.,MangaM.,MatsuyamaI.,RichardsMA..2007.. Evidence for an ancient martian ocean in the topography of deformed shorelines..Nature447::84043[Google Scholar]
    118. PhillipsRJ.,ZuberMT.,SolomonSC.,GolombekMP.,JakoskyBM., et al.2001.. Ancient geodynamics and global-scale hydrology on Mars..Science291::258791[Google Scholar]
    119. PierrehumbertRT.,AbbotDS.,VoigtA.,KollD..2011.. Climate of the Neoproterozoic..Annu. Rev. Earth Planet. Sci.39::41760[Google Scholar]
    120. PollackJB.,KastingJF.,RichardsonSM.,PoliakoffK..1987.. The case for a wet, warm climate on early Mars..Icarus71::20324[Google Scholar]
    121. PostawkoSE.,KuhnWR..1986.. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate..J. Geophys. Res.91:(D4):43138[Google Scholar]
    122. PouletF.,BibringJP.,MustardJF.,GendrinA.,MangoldN., et al.2005.. Phyllosilicates on Mars and implications for early martian climate..Nature438::62327[Google Scholar]
    123. QuintanaEV.,BarclayT.,RaymondSN.,RoweJF.,BolmontE., et al.2014.. An Earth-sized planet in the habitable zone of a cool star..Science344::27780[Google Scholar]
    124. RamirezRM.,KopparapuR.,ZuggerME.,RobinsonTD.,FreedmanR.,KastingJF..2014.. Warming early mars with CO2 and H2..Nat. Geosci.7::5963[Google Scholar]
    125. RichardsonMI.,MischnaMA..2005.. Long-term evolution of transient liquid water on Mars..J. Geophys. Res.110::E03003[Google Scholar]
    126. SaganC..1977.. Reducing greenhouses and the temperature history of Earth and Mars..Nature269::22426[Google Scholar]
    127. ScanlonKE.,HeadJW.,MadeleineJB.,WordsworthRD.,ForgetF..2013.. Orographic precipitation in valley network headwaters: constraints on the ancient Martian atmosphere..Geophys. Res. Lett.40::418287[Google Scholar]
    128. ScottDH.,TanakaKL..1986..Geologic map of the western equatorial region of Mars. Geol. Investig. Ser. Map I-1802-A, US Geol. Surv., Reston, VA:[Google Scholar]
    129. SeguraTL.,McKayCP.,ToonOB..2012.. An impact-induced, stable, runaway climate on Mars..Icarus220::14448[Google Scholar]
    130. SeguraTL.,ToonOB.,ColapreteA..2008.. Modeling the environmental effects of moderate-sized impacts on Mars..J. Geophys. Res.113:E11007[Google Scholar]
    131. SeguraTL.,ToonOB.,ColapreteA.,ZahnleK..2002.. Environmental effects of large impacts on Mars..Science298::197780[Google Scholar]
    132. SleepNH.,ZahnleK..2001.. Carbon dioxide cycling and implications for climate on ancient Earth..J. Geophys. Res.106:(E1):1373400[Google Scholar]
    133. SolomonSC.,AharonsonO.,AurnouJM.,BanerdtWB.,CarrMH., et al.2005.. New perspectives on ancient Mars..Science307::121420[Google Scholar]
    134. SotoA.,MischnaM.,SchneiderT.,LeeC.,RichardsonM..2015.. Martian atmospheric collapse: idealized GCM studies..Icarus250::55369[Google Scholar]
    135. SquyresSW.,KastingJF..1994.. Early Mars: how warm and how wet?.Science265::74449[Google Scholar]
    136. StenchikovGL.,KirchnerI.,RobockA.,GrafHF.,AntunaJC., et al.1998.. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption..J. Geophys. Res.103:(D12):1383757[Google Scholar]
    137. StepinskiTF.,StepinskiAP..2005.. Morphology of drainage basins as an indicator of climate on early Mars..J. Geophys. Res.110::E12S12[Google Scholar]
    138. StroeveJ.,HollandMM.,MeierW.,ScambosT.,SerrezeM..2007.. Arctic sea ice decline: faster than forecast..Geophys. Res. Lett.34::L09501[Google Scholar]
    139. TanakaKL..1986.. The stratigraphy of Mars..J. Geophys. Res.91:(B13):E13958[Google Scholar]
    140. TanakaKL.,ScottDH..1987..Geologic map of the polar regions of Mars. Sci. Investig. Map 3177, US Geol. Surv., Reston, VA:[Google Scholar]
    141. TanakaKL.,SkinnerJA.,DohmJM.,IrwinRPIII.,KolbEJ., et al.2014..Geologic map of Mars. Sci. Investig. Map 3292, US Geol. Surv., Reston, VA:[Google Scholar]
    142. TianF.,ClaireMW.,Haqq-MisraJD.,SmithM.,CrispDC., et al.2010.. Photochemical and climate consequences of sulfur outgassing on early Mars..Earth Planet. Sci. Lett.295::41218[Google Scholar]
    143. ToonOB.,SeguraT.,ZahnleK..2010.. The formation of Martian river valleys by impacts..Annu. Rev. Earth Planet. Sci.38::30322[Google Scholar]
    144. ToscaNJ.,KnollAH..2009.. Juvenile chemical sediments and the long term persistence of water at the surface of Mars..Earth Planet. Sci. Lett.286::37986[Google Scholar]
    145. UdryS.,BonfilsX.,DelfosseX.,ForveilleT.,MayorM., et al.2007.. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8M) in a 3-planet system..Astron. Astrophys.469::L4347[Google Scholar]
    146. UrataRA.,ToonOB..2013.. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate..Icarus226::22950[Google Scholar]
    147. VillanuevaG.,MummaM.,NovakR.,KäuflH.,HartoghP., et al.2015.. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs..Science348::21821[Google Scholar]
    148. von ParisP.,GrenfellJL.,RauerH.,StockJW..2013.. N2-associated surface warming on early Mars..Planet. Space Sci.82::14954[Google Scholar]
    149. WadhwaM..2001.. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes..Science291::152730[Google Scholar]
    150. WalkerJCG.,HayesPB.,KastingJF..1981.. A negative feedback mechanism for the long-term stabilization of the Earth's surface temperature..J. Geophys. Res.86:(C10):977682[Google Scholar]
    151. WalshKJ.,MorbidelliA.,RaymondSN.,O'BrienDP.,MandellAM..2011.. A low mass for Mars from Jupiter's early gas-driven migration..Nature475::2069[Google Scholar]
    152. WebsterCR.,MahaffyPR.,FleschGJ.,NilesPB.,JonesJH., et al.2013.. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere..Science341::26063[Google Scholar]
    153. WernerSC.,TanakaKL..2011.. Redefinition of the crater-density and absolute-age boundaries for the chrono-stratigraphic system of Mars..Icarus215::6037[Google Scholar]
    154. WilliamsRME.,GrotzingerJP.,DietrichWE.,GuptaS.,SumnerDY., et al.2013.. Martian fluvial conglomerates at Gale Crater..Science340::106872[Google Scholar]
    155. WordsworthR.,ForgetF.,EymetV..2010.. Infrared collision-induced and far-line absorption in dense CO2 atmospheres..Icarus210::99297[Google Scholar]
    156. WordsworthR.,ForgetF.,MillourE.,HeadJW.,MadeleineJB.,CharnayB..2013.. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution..Icarus222::119[Google Scholar]
    157. WordsworthR.,KerberL.,PierrehumbertR.,ForgetF.,HeadJWIII..2015.. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3D climate model..J. Geophys. Res. Planets120::120119[Google Scholar]
    158. WordsworthR.,PierrehumbertR..2013.. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere..Science339::6467[Google Scholar]
    159. WrayJ.,EhlmannB.,SquyresS.,MustardJ.,KirkR..2008.. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars..Geophys. Res. Lett.35::L12202[Google Scholar]
    160. YungYL.,NairH.,GerstellMF..1997.. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation..Icarus130::22224[Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    Subscribe to Open. The current volume of the Annual Review of Earth and Planetary Sciences published Open Access

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-earth-060115-012355
    10.1146/annurev-earth-060115-012355
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp