시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
---|---|---|---|---|---|
2 초 | 2048 MB | 6 | 2 | 2 | 40.000% |
You are given an array $a[1..n]$ consisting of $n$ integers from $1$ to $n$. Asubsegment $a[\ell..r]$ of the array is its consecutive part from position $\ell$ to position $r$, inclusive.
A subsegment $a[\ell..r]$ is$k$-good if the following conditions are satisfied:
For each $k$ from $1$ to $\left\lfloor\frac{n}{2}\right\rfloor$, find the number of $k$-good subsegments of the given array $a$.
The first line contains an integer $t$ ($1 \le t \le 5 \cdot 10^5$), the number of test cases. The test cases follow.
The first line of each test case contains an integer $n$ ($2 \le n \le 5 \cdot 10^5$).
The second line consists of $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le n$).
The sum of $n$ over all test cases does not exceed $5 \cdot 10^5$.
For each test case, print a line with $\left\lfloor\frac{n}{2}\right\rfloor$ integers: the number of $k$-good subsegments for each corresponding $k$, starting from $1$.
4101 2 2 2 2 2 3 2 2 261 1 1 2 1 192 2 1 1 1 2 2 1 1103 2 3 2 4 2 10 10 10 10
28 11 3 0 010 2 016 3 0 010 1 0 0 0