Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Weibull distribution

From Wikipedia, the free encyclopedia
Continuous probability distribution
This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages)
This articlehas an unclearcitation style. The reason given is:article uses multiple citation styles, includinginline parenthetical referencing. Pick one style, and then use it consistently. The references used may be made clearer with a different or consistent style ofcitation andfootnoting.(April 2025) (Learn how and when to remove this message)
This article'suse ofexternal links may not follow Wikipedia's policies or guidelines. Pleaseimprove this article by removingexcessive orinappropriate external links, and converting useful links where appropriate intofootnote references.(November 2024) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Weibull (2-parameter)
Probability density function
Probability distribution function
Cumulative distribution function
Cumulative distribution function
Parametersλ(0,+){\displaystyle \lambda \in (0,+\infty )\,}scale
k(0,+){\displaystyle k\in (0,+\infty )\,}shape
Supportx[0,+){\displaystyle x\in [0,+\infty )\,}
PDFf(x)={kλ(xλ)k1e(x/λ)k,x0,0,x<0.{\displaystyle f(x)={\begin{cases}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}},&x\geq 0,\\0,&x<0.\end{cases}}}
CDFF(x)={1e(x/λ)k,x0,0,x<0.{\displaystyle F(x)={\begin{cases}1-e^{-(x/\lambda )^{k}},&x\geq 0,\\0,&x<0.\end{cases}}}
QuantileQ(p)=λ(ln(1p))1k{\displaystyle Q(p)=\lambda (-\ln(1-p))^{\frac {1}{k}}}
MeanλΓ(1+1/k){\displaystyle \lambda \,\Gamma (1+1/k)\,}
Medianλ(ln2)1/k{\displaystyle \lambda (\ln 2)^{1/k}\,}
Mode{λ(k1k)1/k,k>1,0,k1.{\displaystyle {\begin{cases}\lambda \left({\frac {k-1}{k}}\right)^{1/k}\,,&k>1,\\0,&k\leq 1.\end{cases}}}
Varianceλ2[Γ(1+2k)(Γ(1+1k))2]{\displaystyle \lambda ^{2}\left[\Gamma \left(1+{\frac {2}{k}}\right)-\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}\right]\,}
SkewnessΓ(1+3/k)λ33μσ2μ3σ3{\displaystyle {\frac {\Gamma (1+3/k)\lambda ^{3}-3\mu \sigma ^{2}-\mu ^{3}}{\sigma ^{3}}}}
Excess kurtosis(see text)
Entropyγ(11/k)+ln(λ/k)+1{\displaystyle \gamma (1-1/k)+\ln(\lambda /k)+1\,}
MGFn=0tnλnn!Γ(1+n/k), k1{\displaystyle \sum _{n=0}^{\infty }{\frac {t^{n}\lambda ^{n}}{n!}}\Gamma (1+n/k),\ k\geq 1}
CFn=0(it)nλnn!Γ(1+n/k){\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}\lambda ^{n}}{n!}}\Gamma (1+n/k)}
Kullback–Leibler divergencesee below

Inprobability theory andstatistics, theWeibull distribution/ˈwbʊl/ is a continuousprobability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

The distribution is named after Swedish mathematicianWaloddi Weibull, who described it in detail in 1939,[1][2] although it was first identified byRené Maurice Fréchet and first applied byRosin & Rammler (1933) to describe aparticle size distribution.

Definition

[edit]

Standard parameterization

[edit]

Theprobability density function of a Weibullrandom variable is[3][4]

f(x;λ,k)={kλ(xλ)k1e(x/λ)k,x0,0,x<0,{\displaystyle f(x;\lambda ,k)={\begin{cases}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}},&x\geq 0,\\0,&x<0,\end{cases}}}

wherek > 0 is theshape parameter and λ > 0 is thescale parameter of the distribution. Itscomplementary cumulative distribution function is astretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, itinterpolates between theexponential distribution (k = 1) and theRayleigh distribution (k = 2 andλ=2σ{\displaystyle \lambda ={\sqrt {2}}\sigma }).[5]

If the quantity,x, is a "time-to-failure", the Weibull distribution gives a distribution for which thefailure rate is proportional to a power of time. Theshape parameter,k, is that power plus one, and so this parameter can be interpreted directly as follows:[6]

  • A value ofk<1{\displaystyle k<1\,} indicates that thefailure rate decreases over time (like in case of theLindy effect, which however corresponds toPareto distributions[7] rather than Weibull distributions). This happens if there is significant "infant mortality", or defective items failing early and the failure rate decreasing over time as the defective items are weeded out of the population. In the context of thediffusion of innovations, this means negative word of mouth: thehazard function is a monotonically decreasing function of the proportion of adopters;
  • A value ofk=1{\displaystyle k=1\,} indicates that the failure rate is constant over time. This might suggest random external events are causing mortality, or failure. The Weibull distribution reduces to an exponential distribution;
  • A value ofk>1{\displaystyle k>1\,} indicates that the failure rate increases with time. This happens if there is an "aging" process, or parts that are more likely to fail as time goes on. In the context of thediffusion of innovations, this means positive word of mouth: the hazard function is a monotonically increasing function of the proportion of adopters. The function is first convex, then concave with an inflection point at(e1/k1)/e1/k,k>1{\displaystyle (e^{1/k}-1)/e^{1/k},\,k>1\,}.

In the field ofmaterials science, the shape parameterk of a distribution of strengths is known as theWeibull modulus. In the context ofdiffusion of innovations, the Weibull distribution is a "pure" imitation/rejection model.

Alternative parameterizations

[edit]

First alternative

[edit]

Applications inmedical statistics andeconometrics often adopt a different parameterization.[8][9] The shape parameterk is the same as above, while the scale parameter isb=λk{\displaystyle b=\lambda ^{-k}}. In this case, forx ≥ 0, the probability density function is

f(x;k,b)=bkxk1ebxk,{\displaystyle f(x;k,b)=bkx^{k-1}e^{-bx^{k}},}

the cumulative distribution function is

F(x;k,b)=1ebxk,{\displaystyle F(x;k,b)=1-e^{-bx^{k}},}

the quantile function is

Q(p;k,b)=(1bln(1p))1k,{\displaystyle Q(p;k,b)=\left(-{\frac {1}{b}}\ln(1-p)\right)^{\frac {1}{k}},}

the hazard function is

h(x;k,b)=bkxk1,{\displaystyle h(x;k,b)=bkx^{k-1},}

and the mean is

b1/kΓ(1+1/k).{\displaystyle b^{-1/k}\Gamma (1+1/k).}

Second alternative

[edit]

A second alternative parameterization can also be found.[10][11] The shape parameterk is the same as in the standard case, while the scale parameterλ is replaced with a rate parameterβ = 1/λ. Then, forx ≥ 0, the probability density function is

f(x;k,β)=βk(βx)k1e(βx)k{\displaystyle f(x;k,\beta )=\beta k({\beta x})^{k-1}e^{-(\beta x)^{k}}}

the cumulative distribution function is

F(x;k,β)=1e(βx)k,{\displaystyle F(x;k,\beta )=1-e^{-(\beta x)^{k}},}

the quantile function is

Q(p;k,β)=1β(ln(1p))1k,{\displaystyle Q(p;k,\beta )={\frac {1}{\beta }}(-\ln(1-p))^{\frac {1}{k}},}

and the hazard function is

h(x;k,β)=βk(βx)k1.{\displaystyle h(x;k,\beta )=\beta k({\beta x})^{k-1}.}

In all three parameterizations, the hazard is decreasing for k < 1, increasing for k > 1 and constant for k = 1, in which case the Weibull distribution reduces to an exponential distribution.

Properties

[edit]

Density function

[edit]

The form of the density function of the Weibull distribution changes drastically with the value ofk. For 0 <k < 1, the density function tends to ∞ asx approaches zero from above and is strictly decreasing. Fork = 1, the density function tends to 1/λ asx approaches zero from above and is strictly decreasing. Fork > 1, the density function tends to zero asx approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope atx = 0 if 0 <k < 1, infinite positive slope atx = 0 if 1 <k < 2 and null slope atx = 0 ifk > 2. Fork = 1 the density has a finite negative slope atx = 0. Fork = 2 the density has a finite positive slope atx = 0. Ask goes to infinity, the Weibull distribution converges to aDirac delta distribution centered atx = λ. Moreover, the skewness and coefficient of variation depend only on the shape parameter. A generalization of the Weibull distribution is thehyperbolastic distribution of type III.

Cumulative distribution function

[edit]

Thecumulative distribution function for the Weibull distribution is

F(x;k,λ)=1e(x/λ)k{\displaystyle F(x;k,\lambda )=1-e^{-(x/\lambda )^{k}}\,}

forx ≥ 0, andF(x;k; λ) = 0 forx < 0.

Ifx = λ thenF(x;k; λ) = 1 − e−1 ≈ 0.632 for all values of k. Vice versa: atF(x;k;λ) = 0.632 the value of x ≈ λ.

The quantile (inverse cumulative distribution) function for the Weibull distribution is

Q(p;k,λ)=λ(ln(1p))1/k{\displaystyle Q(p;k,\lambda )=\lambda (-\ln(1-p))^{1/k}}

for 0 ≤p < 1.

Thefailure rateh (or hazard function) is given by

h(x;k,λ)=kλ(xλ)k1.{\displaystyle h(x;k,\lambda )={k \over \lambda }\left({x \over \lambda }\right)^{k-1}.}

TheMean time between failuresMTBF is

MTBF(k,λ)=λΓ(1+1/k).{\displaystyle {\text{MTBF}}(k,\lambda )=\lambda \Gamma (1+1/k).}

Moments

[edit]

Themoment generating function of thelogarithm of a Weibull distributedrandom variable is given by[12]

E[etlogX]=λtΓ(tk+1){\displaystyle \operatorname {E} \left[e^{t\log X}\right]=\lambda ^{t}\Gamma \left({\frac {t}{k}}+1\right)}

whereΓ is thegamma function. Similarly, thecharacteristic function of logX is given by

E[eitlogX]=λitΓ(itk+1).{\displaystyle \operatorname {E} \left[e^{it\log X}\right]=\lambda ^{it}\Gamma \left({\frac {it}{k}}+1\right).}

In particular, thenthraw moment ofX is given by

mn=λnΓ(1+nk).{\displaystyle m_{n}=\lambda ^{n}\Gamma \left(1+{\frac {n}{k}}\right).}

Themean andvariance of a Weibullrandom variable can be expressed as

E(X)=λΓ(1+1k){\displaystyle \operatorname {E} (X)=\lambda \Gamma \left(1+{\frac {1}{k}}\right)\,}

and

var(X)=λ2[Γ(1+2k)(Γ(1+1k))2].{\displaystyle \operatorname {var} (X)=\lambda ^{2}\left[\Gamma \left(1+{\frac {2}{k}}\right)-\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}\right]\,.}

The skewness is given by

γ1=2Γ133Γ1Γ2+Γ3[Γ2Γ12]3/2{\displaystyle \gamma _{1}={\frac {2\Gamma _{1}^{3}-3\Gamma _{1}\Gamma _{2}+\Gamma _{3}}{[\Gamma _{2}-\Gamma _{1}^{2}]^{3/2}}}}

whereΓi=Γ(1+i/k){\displaystyle \Gamma _{i}=\Gamma (1+i/k)}, which may also be written as

γ1=Γ(1+3k)λ33μσ2μ3σ3{\displaystyle \gamma _{1}={\frac {\Gamma \left(1+{\frac {3}{k}}\right)\lambda ^{3}-3\mu \sigma ^{2}-\mu ^{3}}{\sigma ^{3}}}}

where the mean is denoted byμ and the standard deviation is denoted byσ.

The excesskurtosis is given by

γ2=6Γ14+12Γ12Γ23Γ224Γ1Γ3+Γ4[Γ2Γ12]2{\displaystyle \gamma _{2}={\frac {-6\Gamma _{1}^{4}+12\Gamma _{1}^{2}\Gamma _{2}-3\Gamma _{2}^{2}-4\Gamma _{1}\Gamma _{3}+\Gamma _{4}}{[\Gamma _{2}-\Gamma _{1}^{2}]^{2}}}}

whereΓi=Γ(1+i/k){\displaystyle \Gamma _{i}=\Gamma (1+i/k)}. The kurtosis excess may also be written as:

γ2=λ4Γ(1+4k)4γ1σ3μ6μ2σ2μ4σ43.{\displaystyle \gamma _{2}={\frac {\lambda ^{4}\Gamma (1+{\frac {4}{k}})-4\gamma _{1}\sigma ^{3}\mu -6\mu ^{2}\sigma ^{2}-\mu ^{4}}{\sigma ^{4}}}-3.}

Moment generating function

[edit]

A variety of expressions are available for the moment generating function ofX itself. As apower series, since the raw moments are already known, one has

E[etX]=n=0tnλnn!Γ(1+nk).{\displaystyle \operatorname {E} \left[e^{tX}\right]=\sum _{n=0}^{\infty }{\frac {t^{n}\lambda ^{n}}{n!}}\Gamma \left(1+{\frac {n}{k}}\right).}

Alternatively, one can attempt to deal directly with the integral

E[etX]=0etxkλ(xλ)k1e(x/λ)kdx.{\displaystyle \operatorname {E} \left[e^{tX}\right]=\int _{0}^{\infty }e^{tx}{\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-(x/\lambda )^{k}}\,dx.}

If the parameterk is assumed to be a rational number, expressed ask =p/q wherep andq are integers, then this integral can be evaluated analytically.[a] Witht replaced by −t, one finds

E[etX]=1λktkpkq/p(2π)q+p2Gp,qq,p(1kp,2kp,,pkp0q,1q,,q1q|pp(qλktk)q){\displaystyle \operatorname {E} \left[e^{-tX}\right]={\frac {1}{\lambda ^{k}\,t^{k}}}\,{\frac {p^{k}\,{\sqrt {q/p}}}{({\sqrt {2\pi }})^{q+p-2}}}\,G_{p,q}^{\,q,p}\!\left(\left.{\begin{matrix}{\frac {1-k}{p}},{\frac {2-k}{p}},\dots ,{\frac {p-k}{p}}\\{\frac {0}{q}},{\frac {1}{q}},\dots ,{\frac {q-1}{q}}\end{matrix}}\;\right|\,{\frac {p^{p}}{\left(q\,\lambda ^{k}\,t^{k}\right)^{q}}}\right)}

whereG is theMeijer G-function.

Thecharacteristic function has also been obtained byMuraleedharan et al. (2007). Thecharacteristic function andmoment generating function of 3-parameter Weibull distribution have also been derived byMuraleedharan & Soares (2014) by a direct approach.

Minima

[edit]

LetX1,X2,,Xn{\displaystyle X_{1},X_{2},\ldots ,X_{n}} be independent and identically distributed Weibull random variables with scale parameterλ{\displaystyle \lambda } and shape parameterk{\displaystyle k}. If the minimum of thesen{\displaystyle n} random variables isZ=min(X1,X2,,Xn){\displaystyle Z=\min(X_{1},X_{2},\ldots ,X_{n})}, then the cumulative probability distribution ofZ{\displaystyle Z} is given by

F(z)=1en(z/λ)k.{\displaystyle F(z)=1-e^{-n(z/\lambda )^{k}}.}

That is,Z{\displaystyle Z} will also be Weibull distributed with scale parametern1/kλ{\displaystyle n^{-1/k}\lambda } and with shape parameterk{\displaystyle k}.

Reparametrization tricks

[edit]

Fix someα>0{\displaystyle \alpha >0}. Let(π1,...,πn){\displaystyle (\pi _{1},...,\pi _{n})} be nonnegative, and not all zero, and letg1,...,gn{\displaystyle g_{1},...,g_{n}} be independent samples ofWeibull(1,α1){\displaystyle {\text{Weibull}}(1,\alpha ^{-1})}, then[13]

Shannon entropy

[edit]

Theinformation entropy is given by[14]

H(λ,k)=γ(11k)+ln(λk)+1{\displaystyle H(\lambda ,k)=\gamma \left(1-{\frac {1}{k}}\right)+\ln \left({\frac {\lambda }{k}}\right)+1}

whereγ{\displaystyle \gamma } is theEuler–Mascheroni constant. The Weibull distribution is themaximum entropy distribution for a non-negative real random variate with a fixedexpected value ofxk equal toλk and a fixed expected value of ln(xk) equal to ln(λk) − γ{\displaystyle \gamma }.

Kullback–Leibler divergence

[edit]

TheKullback–Leibler divergence between two Weibull distributions is given by[15]

DKL(Weib1Weib2)=logk1λ1k1logk2λ2k2+(k1k2)[logλ1γk1]+(λ1λ2)k2Γ(k2k1+1)1{\displaystyle D_{\text{KL}}(\mathrm {Weib} _{1}\parallel \mathrm {Weib} _{2})=\log {\frac {k_{1}}{\lambda _{1}^{k_{1}}}}-\log {\frac {k_{2}}{\lambda _{2}^{k_{2}}}}+(k_{1}-k_{2})\left[\log \lambda _{1}-{\frac {\gamma }{k_{1}}}\right]+\left({\frac {\lambda _{1}}{\lambda _{2}}}\right)^{k_{2}}\Gamma \left({\frac {k_{2}}{k_{1}}}+1\right)-1}

Parameter estimation

[edit]

Ordinary least square using Weibull plot

[edit]
Weibull plot

The fit of a Weibull distribution to data can be visually assessed using a Weibull plot.[16] The Weibull plot is a plot of theempirical cumulative distribution functionF^(x){\displaystyle {\widehat {F}}(x)} of data on special axes in a type ofQ–Q plot. The axes areln(ln(1F^(x))){\displaystyle \ln(-\ln(1-{\widehat {F}}(x)))} versusln(x){\displaystyle \ln(x)}. The reason for this change of variables is the cumulative distribution function can be linearized:

F(x)=1e(x/λ)kln(1F(x))=(x/λ)kln(ln(1F(x)))'y'=klnx'mx'klnλ'c'{\displaystyle {\begin{aligned}F(x)&=1-e^{-(x/\lambda )^{k}}\\[4pt]-\ln(1-F(x))&=(x/\lambda )^{k}\\[4pt]\underbrace {\ln(-\ln(1-F(x)))} _{\textrm {'y'}}&=\underbrace {k\ln x} _{\textrm {'mx'}}-\underbrace {k\ln \lambda } _{\textrm {'c'}}\end{aligned}}}

which can be seen to be in the standard form of a straight line. Therefore, if the data came from a Weibull distribution then a straight line is expected on a Weibull plot.

There are various approaches to obtaining the empirical distribution function from data. One method is to obtain the vertical coordinate for each point using

F^=i0.3n+0.4{\displaystyle {\widehat {F}}={\frac {i-0.3}{n+0.4}}},

wherei{\displaystyle i} is the rank of the data point andn{\displaystyle n} is the number of data points.[17][18] Another common estimator[19] is

F^=i0.5n{\displaystyle {\widehat {F}}={\frac {i-0.5}{n}}}.

Linear regression can also be used to numerically assess goodness of fit and estimate the parameters of the Weibull distribution. The gradient informs one directly about the shape parameterk{\displaystyle k} and the scale parameterλ{\displaystyle \lambda } can also be inferred.

Method of moments

[edit]

Thecoefficient of variation of Weibull distribution depends only on the shape parameter:[20]

CV2=σ2μ2=Γ(1+2k)(Γ(1+1k))2(Γ(1+1k))2.{\displaystyle CV^{2}={\frac {\sigma ^{2}}{\mu ^{2}}}={\frac {\Gamma \left(1+{\frac {2}{k}}\right)-\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}}{\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}}}.}

Equating the sample quantitiess2/x¯2{\displaystyle s^{2}/{\bar {x}}^{2}} toσ2/μ2{\displaystyle \sigma ^{2}/\mu ^{2}}, the moment estimate of the shape parameterk{\displaystyle k} can be read off either from a look up table or a graph ofCV2{\displaystyle CV^{2}} versusk{\displaystyle k}. A more accurate estimate ofk^{\displaystyle {\hat {k}}} can be found using a root finding algorithm to solve

Γ(1+2k)(Γ(1+1k))2(Γ(1+1k))2=s2x¯2.{\displaystyle {\frac {\Gamma \left(1+{\frac {2}{k}}\right)-\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}}{\left(\Gamma \left(1+{\frac {1}{k}}\right)\right)^{2}}}={\frac {s^{2}}{{\bar {x}}^{2}}}.}

The moment estimate of the scale parameter can then be found using the first moment equation as

λ^=x¯Γ(1+1k^).{\displaystyle {\hat {\lambda }}={\frac {\bar {x}}{\Gamma \left(1+{\frac {1}{\hat {k}}}\right)}}.}

Maximum likelihood

[edit]

Themaximum likelihood estimator for theλ{\displaystyle \lambda } parameter givenk{\displaystyle k} is[20]

λ^=(1ni=1nxik)1k{\displaystyle {\widehat {\lambda }}=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{k}\right)^{\frac {1}{k}}}

The maximum likelihood estimator fork{\displaystyle k} is the solution fork of the following equation[21]

0=i=1nxiklnxii=1nxik1k1ni=1nlnxi{\displaystyle 0={\frac {\sum _{i=1}^{n}x_{i}^{k}\ln x_{i}}{\sum _{i=1}^{n}x_{i}^{k}}}-{\frac {1}{k}}-{\frac {1}{n}}\sum _{i=1}^{n}\ln x_{i}}

This equation definesk^{\displaystyle {\widehat {k}}} only implicitly, one must generally solve fork{\displaystyle k} by numerical means.

Whenx1>x2>>xN{\displaystyle x_{1}>x_{2}>\cdots >x_{N}} are theN{\displaystyle N} largest observed samples from a dataset of more thanN{\displaystyle N} samples, then the maximum likelihood estimator for theλ{\displaystyle \lambda } parameter givenk{\displaystyle k} is[21]

λ^k=1Ni=1N(xikxNk){\displaystyle {\widehat {\lambda }}^{k}={\frac {1}{N}}\sum _{i=1}^{N}(x_{i}^{k}-x_{N}^{k})}

Also given that condition, the maximum likelihood estimator fork{\displaystyle k} is[citation needed]

0=i=1N(xiklnxixNklnxN)i=1N(xikxNk)1Ni=1Nlnxi{\displaystyle 0={\frac {\sum _{i=1}^{N}(x_{i}^{k}\ln x_{i}-x_{N}^{k}\ln x_{N})}{\sum _{i=1}^{N}(x_{i}^{k}-x_{N}^{k})}}-{\frac {1}{N}}\sum _{i=1}^{N}\ln x_{i}}

Again, this being an implicit function, one must generally solve fork{\displaystyle k} by numerical means.

Applications

[edit]

The Weibull distribution is used[citation needed]

Fitted cumulative Weibull distribution to maximum one-day rainfalls usingCumFreq, see alsodistribution fitting[22]
Fitted curves for oil production time series data[23]

Related distributions

[edit]

See also

[edit]

Notes

[edit]
  1. ^See (Cheng, Tellambura & Beaulieu 2004) for the case whenk is an integer, and (Sagias & Karagiannidis 2005) for the rational case.

References

[edit]
  1. ^W. Weibull (1939). "The Statistical Theory of the Strength of Materials".Ingeniors Vetenskaps Academy Handlingar (151). Stockholm: Generalstabens Litografiska Anstalts Förlag:1–45.
  2. ^Bowers, et. al. (1997) Actuarial Mathematics, 2nd ed. Society of Actuaries.
  3. ^Papoulis, Athanasios Papoulis; Pillai, S. Unnikrishna (2002).Probability, Random Variables, and Stochastic Processes (4th ed.). Boston: McGraw-Hill.ISBN 0-07-366011-6.
  4. ^Kizilersu, Ayse; Kreer, Markus; Thomas, Anthony W. (2018)."The Weibull distribution".Significance.15 (2):10–11.doi:10.1111/j.1740-9713.2018.01123.x.
  5. ^"Rayleigh Distribution – MATLAB & Simulink – MathWorks Australia".www.mathworks.com.au.
  6. ^Jiang, R.; Murthy, D.N.P. (2011). "A study of Weibull shape parameter: Properties and significance".Reliability Engineering & System Safety.96 (12):1619–26.doi:10.1016/j.ress.2011.09.003.
  7. ^Eliazar, Iddo (November 2017). "Lindy's Law".Physica A: Statistical Mechanics and Its Applications.486:797–805.Bibcode:2017PhyA..486..797E.doi:10.1016/j.physa.2017.05.077.S2CID 125349686.
  8. ^Collett, David (2015).Modelling survival data in medical research (3rd ed.). Boca Raton: Chapman and Hall / CRC.ISBN 978-1439856789.
  9. ^Cameron, A. C.; Trivedi, P. K. (2005).Microeconometrics : methods and applications. Cambridge University Press. p. 584.ISBN 978-0-521-84805-3.
  10. ^Kalbfleisch, J. D.; Prentice, R. L. (2002).The statistical analysis of failure time data (2nd ed.). Hoboken, N.J.: J. Wiley.ISBN 978-0-471-36357-6.OCLC 50124320.
  11. ^Therneau, T. (2020)."A Package for Survival Analysis in R." R package version 3.1.
  12. ^abcJohnson, Kotz & Balakrishnan 1994
  13. ^Balog, Matej; Tripuraneni, Nilesh; Ghahramani, Zoubin; Weller, Adrian (17 July 2017)."Lost Relatives of the Gumbel Trick".International Conference on Machine Learning. PMLR:371–379.arXiv:1706.04161.
  14. ^Cho, Youngseuk; Sun, Hokeun; Lee, Kyeongjun (5 January 2015)."Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring".Entropy.17 (1):102–122.Bibcode:2015Entrp..17..102C.doi:10.3390/e17010102.ISSN 1099-4300.
  15. ^Bauckhage, Christian (2013). "Computing the Kullback-Leibler Divergence between two Weibull Distributions".arXiv:1310.3713 [cs.IT].
  16. ^"1.3.3.30. Weibull Plot".www.itl.nist.gov.
  17. ^Wayne Nelson (2004)Applied Life Data Analysis. Wiley-BlackwellISBN 0-471-64462-5
  18. ^Barnett, V. (1975)."Probability Plotting Methods and Order Statistics".Journal of the Royal Statistical Society. Series C (Applied Statistics).24 (1):95–108.doi:10.2307/2346708.ISSN 0035-9254.JSTOR 2346708.
  19. ^ISO 20501:2019 – Fine ceramics (advanced ceramics, advanced technical ceramics) – Weibull statistics for strength data.
  20. ^abCohen, A. Clifford (November 1965)."Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples"(PDF).Technometrics.7 (4):579–588.doi:10.1080/00401706.1965.10490300.
  21. ^abSornette, D. (2004).Critical Phenomena in Natural Science: Chaos, Fractals, Self-organization, and Disorder..
  22. ^"CumFreq, Distribution fitting of probability, free software, cumulative frequency".
  23. ^abLee, Se Yoon; Mallick, Bani (2021)."Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas".Sankhya B.84:1–43.doi:10.1007/s13571-020-00245-8.
  24. ^"Wind Speed Distribution Weibull – REUK.co.uk".www.reuk.co.uk.
  25. ^Liu, Chao; White, Ryen W.; Dumais, Susan (19 July 2010).Understanding web browsing behaviors through Weibull analysis of dwell time. ACM. pp. 379–386.doi:10.1145/1835449.1835513.ISBN 9781450301534.S2CID 12186028.
  26. ^Sharif, M.Nawaz; Islam, M.Nazrul (1980). "The Weibull distribution as a general model for forecasting technological change".Technological Forecasting and Social Change.18 (3):247–56.doi:10.1016/0040-1625(80)90026-8.
  27. ^Computational Optimization of Internal Combustion Engine page 49
  28. ^Austin, L. G.; Klimpel, R. R.; Luckie, P. T. (1984).Process Engineering of Size Reduction. Hoboken, NJ: Guinn Printing Inc.ISBN 0-89520-421-5.
  29. ^Chandrashekar, S. (1943). "Stochastic Problems in Physics and Astronomy".Reviews of Modern Physics.15 (1): 86.Bibcode:1943RvMP...15....1C.doi:10.1103/RevModPhys.15.1.
  30. ^ECSS-E-ST-10-12C – Methods for the calculation of radiation received and its effects, and a policy for design margins (Report). European Cooperation for Space Standardization. 15 November 2008.
  31. ^L. D. Edmonds; C. E. Barnes; L. Z. Scheick (May 2000). "8.3 Curve Fitting".An Introduction to Space Radiation Effects on Microelectronics(PDF) (Report). NASA Jet Propulsion Laboratory, California Institute of Technology. pp. 75–76.
  32. ^"System evolution and reliability of systems". Sysev (Belgium). 1 January 2010.
  33. ^Montgomery, Douglas (19 June 2012).Introduction to statistical quality control. [S.l.]: John Wiley. p. 95.ISBN 9781118146811.
  34. ^Chatfield, C.; Goodhardt, G.J. (1973). "A Consumer Purchasing Model with Erlang Interpurchase Times".Journal of the American Statistical Association.68 (344):828–835.doi:10.1080/01621459.1973.10481432.

Sources

[edit]

Further reading

[edit]

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Weibull_distribution&oldid=1287794147"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp