Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vulcan Centaur

From Wikipedia, the free encyclopedia
(Redirected fromVulcan (rocket))
This article is about the American Vulcan Centaur launch vehicle by ULA. Not to be confused with the RussianVulkan conceptual launch vehicle or the EuropeanVulcain rocket engine. For other uses, seeVulcan (disambiguation).
United Launch Alliance launch vehicle

Vulcan Centaur
Vulcan Centaur in VC2S configuration ahead of its maiden flight
FunctionHeavy-lift launch vehicle
ManufacturerUnited Launch Alliance
Country of originUnited States
Cost per launchUS$110 million (starting)[1]
Size
HeightStandard: 61.6 m (202 ft)
Long: 67.3 m (221 ft)[2]
Diameter5.4 m (18 ft)[3]
Mass546,700 kg (1,205,300 lb)
Stages2
Capacity
Payload toLEO
Orbital inclination28.7°
Mass27,200 kg (60,000 lb)[4]
Payload toGTO
Orbital inclination27°
Mass15,300 kg (33,700 lb)[4]
Payload toGEO
Mass7,000 kg (15,000 lb)[4]
Payload toTLI
Mass12,100 kg (26,700 lb)[4]
Launch history
StatusOperational
Launch sites
Total launches2
Success(es)2
First flight8 January 2024[6]
Last flight4 October 2024
Boosters –GEM-63XL
No. boosters0, 2, 4, or 6[7]
Height21.98 m (865.3 in)
Diameter1.62 m (63.7 in)
Empty mass4,521 kg (9,966 lb)
Gross mass53,030 kg (116,920 lb)
Propellant mass47,853 kg (105,497 lb)
Maximum thrust2,061 kN (463,249 lbf) each
Total thrust12,364 kN (2,779,494 lbf) with 6
Specific impulse280.3 s (2.749 km/s)
Burn time87.3 seconds[8]
PropellantAP /HTPB /Al
First stage – Vulcan
Height33.3 m (109 ft)
Diameter5.4 m (18 ft)
Empty mass28,600 kg (63,100 lb)[9]
Gross mass382,000 kg (842,000 lb)[9]
Powered by2 ×BE-4
Maximum thrust4,893 kN (1,100,000 lbf)[10]
Specific impulse320 s (3.1 km/s) sea level[9] / 340 s (3.3 km/s) vac.[11]
Burn time299 seconds[12][13]
PropellantLOX /CH4
Second stage –Centaur V
Height12.6 m (41 ft)[14]
Diameter5.4 m (18 ft)
Empty mass3,200 kg (7,100 lb)[9]
Gross mass24,300 kg (53,600 lb)[9]
Powered by
Maximum thrust
  • RL10C: 203.6 kN (45,780 lbf)
  • RL10C-X: 214.6 kN (48,240 lbf)[17]
Specific impulse
  • RL10C: 453.8 s (4.450 km/s)
  • RL10C-X: 460.9 s (4.520 km/s)[17]
Burn time1,077 seconds[10]
PropellantLOX /LH2

Vulcan Centaur is aheavy-lift launch vehicle[a] developed and operated byUnited Launch Alliance (ULA). It is atwo-stage-to-orbit launch vehicle consisting of the Vulcan first stage and theCentaur second stage. Replacing ULA'sAtlas V andDelta IV rockets, the Vulcan Centaur is principally designed to meet the needs of theNational Security Space Launch (NSSL) program, which supportsU.S. intelligence agencies and theDefense Department, but ULA believes it will also be able to price missions low enough to attract commercial launches.

ULA began development of the new launch vehicle in 2014, primarily to compete with SpaceX’sFalcon 9 and to comply with a Congressional mandate to phase out the use of the Russian-madeRD-180 engine that powered the Atlas V. The first launch of the Vulcan Centaur was initially scheduled for 2019 but faced multiple delays due to developmental challenges with its newBE-4 first-stage engine and the Centaur second-stage.[18]

The Vulcan Centaur had a near perfect first launch on 8 January 2024 carrying thePeregrine lunar lander, the first mission of NASA'sCommercial Lunar Payload Services program. Its second launch, a NSSL certification flight, took place on 4 October 2024, which achieved an acceptable orbital insertion, despite the nozzle on one of theGEM-63XL solid rocket boosters falling off which led to reduced, asymmetrical thrust. Following a five–month review of the launches, the Space Force certified the Vulcan for NSSL missions in March 2025.

Description

[edit]

The Vulcan Centaur re-uses many technologies from ULA's Atlas V and Delta IV launch vehicles,[19] with an aim to achieve better performance and lower production costs. Also, unlike vertically integrated competitors likeSpaceX andBlue Origin, ULA (itself a joint venture between Boeing and Lockheed Martin) relies heavily on subcontractors to build major components of the rocket.

The Vulcan'sfirst stage shares a common heritage with the Delta IV'sCommon Booster Core.[10]: 1–5  It is built in the sameDecatur, Alabama factory using much of the same manufacturing equipment, however it is about 0.3 meters (1 ft) larger in diameter. The most significant change in the first stage is its use ofliquid methane (liquefied natural gas) as fuel in twoBE-4 engines developed by Blue Origin.[20][21] Compared to theliquid hydrogen used on the Delta IV, methane is denser and has a higher boiling point, allowing for smaller, lighter fuel tanks. It also burns cleaner than thekerosene used in the Atlas V, reducing hydrocarbon buildup in engines, which would facilitate refurbishment under the proposedSMART reuse system.[22][23]

The rocket's second stage, theCentaur V, is an upgraded version of theCentaur III used on the Atlas V offering enhanced performance. It is powered by twoRL10 engines fromAerojet Rocketdyne, fueled by liquid hydrogen.[24]

To further enhance payload capacity, the Vulcan Centaur can be equipped with up to sixGEM 63XL SRBs (solid rocket boosters) fromNorthrop Grumman—a lengthened version of the GEM 63 SRBs used on the Atlas V.[7][25]

A single-core Vulcan Centaur with six SRBs delivers heavy-lift capabilities comparable to the larger and more expensive three-core Delta IV Heavy. With a single core and six GEM boosters, the Vulcan Centaur can lift 27,200 kilograms (60,000 lb) tolow Earth orbit (LEO),[26] surpassing the Atlas V's maximum of 18,850 kg (41,560 lb) with a single core and five GEM boosters,[27] and approaching the 28,790 kg (63,470 lb) capacity of the three-core Delta IV Heavy.[28]

Beyond Gravity provides additional components, including theinterstage adapter,payload fairing, and payload attachment fitting, which secures the payload and fairings to the second stage until commanded to release. The company also supplies aheat shield to protect equipment.[29]

Designed to meet theNational Security Space Launch (NSSL) program's requirements, the Vulcan Centaur is also designed to be capable of achievinghuman-rating certification, enabling it to carry crewed spacecraft such as theBoeing Starliner orSierra Nevada Dream Chaser.[24][30][2]

History

[edit]

Background

[edit]

ULA decided to develop the Vulcan Centaur in 2014 for two main reasons. First, its commercial and civil customers were flocking toSpaceX's cheaperFalcon 9reusable launch vehicle, leaving ULA increasingly reliant on U.S. military and spy agency contracts.[31][32] Second,Russia's annexation of Crimea in 2014 heightened Congressional discomfort with the Pentagon's reliance on the Atlas V, which used the made-in-RussiaRD-180 engine. In 2016, Congress would pass a law barring the military from procuring launch services based on the RD-180 engine after 2022.[33]

In September 2018, ULA announced that it had picked theBE-4 engine fromBlue Origin and fueled byliquid oxygen (LOX) andliquid methane (CH4) to replace the RD-180 on a new first-stage booster.[34] The engine was already in its third year of development, and ULA said it expected the new stage and engine to start flying as soon as 2019.[35] Two of the 2,400-kilonewton (550,000 lbf)-thrust BE-4 engines were to be used on a new launch vehicle booster.[36][37][35]

A month later, ULA restructured company processes and its workforce to reduce costs. The company said that the successor to Atlas V would blend existing Atlas V and Delta IV with a goal of halving the cost of the Atlas V rocket.[32]

Announcement

[edit]

In 2015, ULA announced the Vulcan rocket and proposed to incrementally replace existing vehicles with it.[38] Vulcan deployment was expected to begin with a new first stage based on the Delta IV's fuselage diameter and production process, and initially expected to use two BE-4 engines or theAerojet Rocketdyne AR1 as an alternative. The second stage was to be the existing Centaur III, already used on Atlas V. A later upgrade, theAdvanced Cryogenic Evolved Stage (ACES), was planned for introduction a few years after Vulcan's first flight.[38] ULA also revealed a design concept for reuse of the Vulcan booster engines, thrust structure and first stage avionics, which could be detached as a module from the propellant tanks afterbooster engine cutoff; the module wouldre-enter the atmosphere behind an inflatable heat shield.[39]

Funding

[edit]

Through the first several years, the ULA board of directors made quarterly funding commitments to Vulcan Centaur development.[40] As of October 2018[update], the US government had committed about $1.2 billion in apublic–private partnership to Vulcan Centaur development, with plans for more once ULA concluded aNational Security Space Launch contract.[41]

By March 2016, theUnited States Air Force (USAF) had committed up to $202 million for Vulcan development. ULA had not yet estimated the total cost of development but CEOTory Bruno said that "new rockets typically cost $2 billion, including $1 billion for the main engine".[40] In March 2018, Bruno said the Vulcan-Centaur had been "75% privately funded" up to that point.[42] In October 2018, following a request for proposals and technical evaluation, ULA was awarded $967 million to develop a prototype Vulcan launch system as part of the National Security Space Launch program.[41]

Development, production, and testing

[edit]

In September 2015, it was announced BE-4 rocket engine production would be expanded[clarification needed] to allow more testing.[43] The following January, ULA was designing two versions of the Vulcan first stage; the BE-4 version has a 5.4 m (18 ft) diameter to support the use of the less dense methane fuel.[21] In late 2017, the upper stage was changed to the larger and heavier Centaur V, and the launch vehicle was renamed Vulcan Centaur.[42] In May 2018, ULA announced the selection ofAerojet Rocketdyne's RL10 engine for the Vulcan Centaur upper stage.[44] That September, ULA announced the selection of the Blue Origin BE-4 engine for Vulcan's first stage.[45][46] In October, the USAF released an NSSL launch service agreement with new requirements, delaying Vulcan's initial launch to April 2021, after an earlier postponement to 2020.[47][48]

In August 2019, the parts of Vulcan'smobile launcher platform (MLP) were transported[49] to theSpaceflight Processing Operations Center (SPOC) nearSLC-40 andSLC-41,Cape Canaveral,Florida. The MLP was fabricated in eight sections and moves at 3 mph (4.8 km/h) on rail bogies, standing 183 ft (56 m) tall.[50] In February 2021, ULA shipped the first completed Vulcan core booster to Florida for pathfinder tests ahead of the Vulcan's debut launch.[51] Testing continued proceeded with the pathfinder booster throughout that year.[52][53]

In August 2019, ULA said Vulcan Centaur would first fly in early 2021, carryingAstrobotic Technology'sPeregrine lunar lander.[54][55][37] By December 2020, the launch had been delayed to 2022 because of technical problems with the BE-4 main engine.[56][57] In June 2021, Astrobotic saidPeregrine would not be ready on time due to theCOVID-19 pandemic, delaying the mission and Vulcan Centaur's first launch; furtherPeregrine delays put the launch of Vulcan into 2023.[58][14][59] In March 2023, a Centaur V test stage failed during a test sequence. To fix the problem, ULA changed the structure of the stage and built a new Centaur for Vulcan Centaur's maiden flight.[60] In October 2023, ULA announced they aimed to launch Vulcan Centaur by year's end.[61]

Certification flights

[edit]
Launch of thePeregrine lunar lander on Vulcan Centaur's first flight

On 8 January 2024, Vulcan lifted off for the first time. The flight used the VC2S configuration, with two solid rocket boosters and a standard-length fairing. A 4-minutetrans-lunar injection burn followed by payload separation put the Peregrine lander on a trajectory to the Moon. One hour and 18 minutes into the flight, the Centaur upper stage fired for a third time, sending it into aheliocentric orbit to test how it would behave in long missions, such as those required to send payloads togeostationary orbit.[62][63]

A failure in thePeregrine's propulsion system shortly after separation prevented it from landing on the Moon; Astrobotic said the Vulcan Centaur rocket performed without problems.[64]

On 14 August 2019, ULA won a commercial competition when it was announced the second Vulcan certification flight would be named SNC Demo-1, the first of sevenDream Chaser CRS-2 flights under NASA'sCommercial Resupply Services program. They will use the four-SRB VC4 configuration.[65] The SNC Demo-1 was scheduled for launch no earlier than April 2024.[66]

After Vulcan Centaur's second certification mission, the rocket will be qualified for use on U.S. military missions.[67] As of August 2020[update], Vulcan was to launch ULA's awarded 60% share ofNational Security Space Launch payloads from 2022 to 2027,[68] but delays occurred. TheSpace Force's USSF-51 launch in late 2022 was be the first national security classified mission, but in May 2021 the spacecraft was reassigned to anAtlas V to "mitigate schedule risk associated with Vulcan Centaur non-recurring design validation".[69] For similar reasons, theKuiper Systems prototype flight was moved to an Atlas V rocket.[70]

After Vulcan's first launch in January 2024, developmental delays with theDream Chaser led ULA to contemplate replacing it with a mass simulator so Vulcan could move ahead with the certification required by its Air Force contract.[71]Bloomberg News reported in May 2024 that United Launch Alliance was accruing financial penalties due to delays in the military launch contracts.[72] On 10 May, Air Force Assistant SecretaryFrank Calvelli wrote to Boeing and Lockheed executives. "I am growing concerned with ULA's ability to scale manufacturing of its Vulcan rocket and scale its launch cadence to meet our needs", Calvelli wrote in the letter, a copy of which was obtained by theWashington Post. "Currently there is military satellite capability sitting on the ground due to Vulcan delays."[73] In June 2024, Bruno announced that Vulcan would make its second flight in September with amass simulator with some "experiments and demonstrations" to help develop future technology for the Centaur upper stage.[74]

Vulcan Centaur lifted off on the second of two flights needed to certify the rocket for future NSSL missions at 11:25 UTC on 4 October 2024. Approximately 37 seconds into the launch, thenozzle on one of thesolid rocket boosters (SRB) fell off resulting in a shower of debris in the exhaust plume. Although the SRB continued to function for its full 90-second burn, the anomaly led to reduced, asymmetrical thrust. This caused the rocket to slightly tilt before theguidance system and main engines successfully corrected and extended their burn by roughly 20 seconds to compensate. Despite the anomaly, the rocket achieved an acceptable orbital insertion.[75][76]

The nozzle anomaly added to the already extensive process required to certify the Vulcan for NSSL missions. Following a five-month review, the Space Force certified the Vulcan on 26 March 2025.[77]

Versions and configurations

[edit]

ULA has four-character designations for the various Vulcan Centaur configurations. They start with VC for the Vulcan first stage and the Centaur upper stage. The third character is the number of SRBs attached to the Vulcan—0, 2, 4 or 6—and the fourth denotes the payload-fairing length: S for Standard (15.5 m (51 ft)) or L for Long (21.3 m (70 ft)).[78] For example, "VC6L" would represent a Vulcan first stage, a Centaur upper stage, six SRBs and a long-configuration fairing.[78] The Vulcan Centaur with two or six SRBs is the standard offering, with the zero and four SRB variants offered on a mission-unique basis.[2]

Starting in late 2025, ULA plans to upgrade the Centaur upper stage with theRL10C-X engine which will have a fixed nozzle extension and offer slightly increased thrust and specific impulse, offering minor improvements to payload capacities.[16][2]

Capabilities

[edit]

The payload capacity of Vulcan Centaur versions are:[79][2]

VersionSRBsPayload mass to...
ISS[b]SSO[c]MEO[d]GEO[e]GTO[f]Molniya[g]TLI[h]TMI[i]
VC008,800 kg (19,400 lb)7,900 kg (17,400 lb)300 kg (660 lb)3,300 kg (7,300 lb)2,500 kg (5,500 lb)2,100 kg (4,600 lb)
VC2216,300 kg (35,900 lb)14,400 kg (31,700 lb)3,800 kg (8,400 lb)2,500 kg (5,500 lb)8,300 kg (18,300 lb)6,200 kg (13,700 lb)6,200 kg (13,700 lb)3,600 kg (7,900 lb)
VC4421,400 kg (47,200 lb)18,500 kg (40,800 lb)6,100 kg (13,400 lb)4,800 kg (10,600 lb)11,600 kg (25,600 lb)8,900 kg (19,600 lb)9,100 kg (20,100 lb)6,000 kg (13,000 lb)
VC6625,600 kg (56,400 lb)22,300 kg (49,200 lb)7,900 kg (17,400 lb)6,300 kg (13,900 lb)14,400 kg (31,700 lb)10,600 kg (23,400 lb)11,300 kg (24,900 lb)7,600 kg (16,800 lb)
VC6
(upgrade)[j]
626,900 kg (59,300 lb)TBA8,600 kg (19,000 lb)7,000 kg (15,000 lb)15,300 kg (33,700 lb)TBA12,100 kg (26,700 lb)7,600 kg (16,800 lb)
Notes
  1. ^Vulcan Centaur meets the heavy-lift capability of 20,000 kg tolow Earth orbit when launching with certain booster configurations
  2. ^407 km (253 mi) circular orbit at 51.6° inclination
  3. ^555 km (345 mi) circular orbit at 98.75° inclination
  4. ^20,368 km (12,656 mi) circular orbit at 55° inclination
  5. ^36,101 km (22,432 mi) circular orbit at 0° inclination
  6. ^1,800 m/s delta-V with 185 km (115 mi) perigee and 35,786 km (22,236 mi) apogee orbit at 27° inclination
  7. ^1,203 km (748 mi) perigee and 39,170 km (24,340 mi) apogee orbit at 63.4° inclination
  8. ^Characteristic energy C3 = −2 km2/sec2
  9. ^C3 = +20 km2/sec2
  10. ^Centaur upper stage engines upgraded to RL10C-X

These capabilities reflect NSSL requirements, plus room for growth.[4][80]

A Vulcan Centaur with six solid rocket boosters can put 27,200 kilograms (60,000 lb) into low Earth orbit, nearly as much as the three-core Delta IV Heavy.[24]

Launch history

[edit]
This section istranscluded fromList of Vulcan launches.(edit |history)

2024

[edit]
Flight No.Date / time (UTC)Rocket,
configuration
Launch sitePayloadPayload massOrbitCustomerLaunch
outcome
18 January 2024
07:18
Vulcan CentaurVC2SCape Canaveral,SLC‑41Peregrine lander1,283 kg (2,829 lb)TLIAstrobotic TechnologySuccess[81]
Enterprise (space burial)HeliocentricCelestis
Maiden flight of Vulcan Centaur and Vulcan CentaurVC2S Configuration.Certification-1 mission, the first of two launches needed to certify the rocket forNational Security Space Launch (NSSL) missions. Payload fromCelestis, demonstrated engine restart capability of the Centaur upper stage delivering multiple payloads to different orbits. ThePeregrine payload failed in transit to the Moon, precluding a landing attempt, due to reasons unrelated to the launch vehicle.[82]
24 October 2024
11:25
Vulcan Centaur VC2SCape Canaveral,SLC‑41Mass simulator1,500 kg (3,300 lb)HeliocentricUnited Launch AllianceSuccess
Certification-2 mission, the second of two launches needed to certify the rocket for NSSL missions. Originally scheduled to carry the first flight ofDream Chaser; however, due to schedule delays with Dream Chaser, ULA flew amass simulator with experiments and demonstrations of futureCentaur V technologies.[83][84] Approximately 37 seconds into the launch, thenozzle on one ofsolid rocket boosters (SRB) fell off resulting in a shower of debris in the exhaust plume. Although the SRB continued to function for its full 90-second burn, the anomaly led to reduced, asymmetrical thrust. This caused the rocket to slightly tilt before theguidance system and main engines successfully corrected and extended their burn by roughly 20 seconds to compensate. Despite the anomaly, the rocket achieved nominal orbital insertion,[75][76] with the Space Force praising the launch and "the robustness of the total Vulcan system".[85] The nozzle anomaly was attributed to a manufacturing defect in a insulator located inside the nozzle.[86]

Future launches

[edit]

Future launches are listed chronologically when firm plans are in place. The order of the later launches is much less certain.[87] Launches are expected to take place "no earlier than" (NET) the listed date.

2025

[edit]
Date / time (UTC)[87]Rocket,
configuration
Launch sitePayloadOrbitCustomer
Q2 2025Vulcan CentaurVC4SCape Canaveral,SLC‑41USSF-106 (NTS-3)GSOU.S. Space Force
USSF-106 mission.[88] Maiden flight of Vulcan CentaurVC4S Configuration.[89][90] First NSSL mission for Vulcan Centaur.[91] It will launch Navigation Technology Satellite 3 (NTS-3), an experimental spacecraft to test technologies for next-generation GPS satellites.
Q2 2025Vulcan Centaur VC4SCape Canaveral,SLC‑41USSF-87 (GSSAP 7 & 8)GSOU.S. Space Force
USSF-87 mission.[92] It will launch two identicalGeosynchronous Space Situational Awareness satellites, GSSAP-7 and 8, directly to a geosynchronous orbit.[93]
Q3 2025Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41SSC Demo-1 (Dream ChaserTenacity)LEO (ISS)NASA (CRS)
First flight ofDream Chaser. Maiden flight of the Vulcan CentaurVC4L configuration.
Q3 2025[94]Vulcan Centaur VC2SVandenberg,SLC‑3ESDA T1TR-BLEOSDA
Tranche 1 Tracking Layer B missile tracking satellites.
Q3 2025[94]Vulcan Centaur VC2SVandenberg,SLC‑3ESDA T1TR-DLEOSDA
Tranche 1 Tracking Layer D missile tracking satellites.
December 2025[95]Vulcan CentaurCape Canaveral,SLC‑41[96]NG-OPIR-GEO 1 (USSF-57)GEOU.S. Space Force
Next Generation Overhead Persistent Infrared satellite.
Q4 2025[94]Vulcan CentaurVandenberg,SLC‑3EUSSF-114TBAU.S. Space Force
Classified payload.
2025[97]Vulcan Centaur VC4SCape Canaveral,SLC‑41USSF-112TBAU.S. Space Force
Classified payload.
2025[94]Vulcan CentaurVC4Cape Canaveral,SLC‑41NROL-64TBANRO
FirstNRO launch on Vulcan
2025[94]Vulcan CentaurVandenberg,SLC‑3ENROL-83TBANRO
Classified NRO payload. First announced Vulcan Centaur launch from Vandenberg.
2025Vulcan Centaur VC2S[98]Cape Canaveral,SLC‑41GPS III SV09[99]MEOU.S. Space Force
FirstGPS mission for Vulcan Centaur.NSSL contract for FY2024.
2025[75]Vulcan Centaur VC2S[98]Cape Canaveral,SLC‑41GPS III SV10[99]MEOU.S. Space Force


2025[100]Vulcan CentaurVC4Cape Canaveral,SLC‑41PTS-PGEOU.S. Space Force
Protected Tactical Satcom prototype payload. The PTS payload will fly on dedicated Northrop Grumman built ESPAStar-HP satellite bus.
2025[97][101]Vulcan CentaurVC2LCape Canaveral,SLC‑41WGS-11GEOU.S. Space Force
Military communications satellite. Maiden flight of the Vulcan CentaurVC2L configuration.

2026

[edit]
Date / time (UTC)Rocket,
configuration
Launch sitePayloadOrbitCustomer
2026[95]Vulcan CentaurCape Canaveral,SLC‑41[96]Missile Track Custody 1 (USSF-95)MEOU.S. Space Force
First launch of Missile Track Custody satellites.
Q4 2026[95]Vulcan CentaurVandenberg,SLC‑3ESDA T2TL-BLEOSDA
Tranche 2 Transport Layer B missile tracking satellites.

2027

[edit]
Date / time (UTC)Rocket,
configuration
Launch sitePayloadOrbitCustomer
2027Vulcan CentaurCape Canaveral,SLC‑41GPS IIIF-1[99]MEOU.S. Space Force
FirstGPS Block IIIF navigation satellite.
2027Vulcan CentaurCape Canaveral,SLC‑41GPS IIIF-2[99]MEOU.S. Space Force
Also designated USSF-49 under NSSL

TBD

[edit]
Date / time (UTC)Rocket,
configuration
Launch sitePayloadOrbitCustomer
NLT 2027[102][95]Vulcan CentaurCape Canaveral,SLC‑41[96]DRACO Demo (USSF-25)LEOU.S. Space Force
Demonstration Rocket for Agile Cislunar Operations (DRACO) is aDARPA program to demonstrate a workingnuclear thermal rocket in space.
TBD[95]Vulcan CentaurCape Canaveral,SLC‑41[96]NROL-56TBANRO
Classified NRO payload.
TBD[95]Vulcan CentaurVandenberg,SLC‑3E[96]NROL-73TBANRO
Classified NRO payload.
TBD[95]Vulcan CentaurVandenberg,SLC‑3E[96]NROL-100TBANRO
Classified NRO payload.
TBD[95]Vulcan CentaurCape Canaveral,SLC‑41[96]NROL-109TBANRO
Classified NRO payload.
TBD[95]Vulcan CentaurCape Canaveral,SLC‑41[96]Silentbarker 2A, 2B, 2C (NROL-118)GEOU.S. Space Force (NRO)
Classified USSF & NRO partnered program.
TBD[95]Vulcan CentaurCape Canaveral,SLC‑41[96]STP-5LEOU.S. Space Force
Two satellites for Department of Defense Strategic Capabilities Office[103]
TBD[104]Vulcan CentaurCape Canaveral,SLC‑41USSF-16TBAU.S. Space Force
Classified payload.
TBD[104]Vulcan CentaurCape Canaveral,SLC‑41USSF-23TBAU.S. Space Force
Classified payload.
TBD[104]Vulcan CentaurCape Canaveral,SLC‑41USSF-43TBAU.S. Space Force
Classified payload.
TBD[105]Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41Dream ChaserLEO (ISS)NASA (CRS)
Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41Dream ChaserLEO (ISS)NASA (CRS)
Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41Dream ChaserLEO (ISS)NASA (CRS)
Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41Dream ChaserLEO (ISS)NASA (CRS)
Vulcan CentaurVC4L[90]Cape Canaveral,SLC‑41Dream ChaserLEO (ISS)NASA (CRS)
5 more launches on contract.
TBD[106]Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-01)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-02)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-03)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-04)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-05)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-06)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-07)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-08)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-09)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-10)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-11)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-12)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-13)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-14)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-15)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-16)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-17)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-18)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-19)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-20)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-21)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-22)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-23)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-24)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-25)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-26)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-27)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-28)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-29)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-30)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-31)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-32)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-33)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-34)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-35)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-36)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-37)LEOAmazon (Kuiper Systems)
Vulcan CentaurVC6L[90]Cape Canaveral,SLC‑41Project Kuiper x 45 (KV-38)LEOAmazon (Kuiper Systems)
38 Vulcan Centaur launches for Amazon'sProject Kuiper.

Potential upgrades

[edit]

ULA plans to continually improve the Vulcan Centaur. The company plans to introduce its first upgrades in 2025, with subsequent improvements occurring roughly every two to three years.[1]

Since 2015, ULA has spoken of several technologies that would improve the Vulcan launch vehicle's capabilities. These include first-stage improvements to make the most expensive components potentially reusable and second-stage improvements to allow the rocket to operate for months in Earth-orbitcislunar space.[107]

Long-endurance upper stages

[edit]
Main article:Advanced Cryogenic Evolved Stage

The ACES upper stage—fueled with liquid oxygen (LOX) and liquid hydrogen (LH2) and powered by up to four rocket engines with the engine type yet to be selected—was a conceptual upgrade to Vulcan's upper stage at the time of the announcement in 2015. This stage could be upgraded to include Integrated Vehicle Fluids technology that would allow the upper stage to function in orbit for weeks instead of hours. The ACES upper stage was cancelled in September 2020,[38][108] and ULA said the Vulcan second stage would now be the Centaur V upper stage: a larger, more powerful version of the Dual Engine Centaur upper stage used by the Atlas V N22.[24][107] A senior executive at ULA said the Centaur V design was also heavily influenced by ACES.[24][109]

However, ULA said in 2021 that it is working to add more value to upper stages by having them perform tasks such as operating as space tugs. CEO Tory Bruno says ULA is working on upper stages with hundreds of times the endurance of those currently in use.[109]

SMART reuse

[edit]

A method of main engine reuse called Sensible Modular Autonomous Return Technology (SMART) is a proposed upgrade for Vulcan Centaur. In the concept, the booster engines, avionics, and thrust structure detach as a module from the propellant tanks after booster engine cutoff. The engine module then falls through the atmosphere protected by aninflatable heat shield. After parachute deployment, the engine section splashes down, using the heat shield as a raft.[110] Before 2022, ULA intended to catch the engine section using a helicopter.[110] ULA estimated this technology could reduce the cost of the first-stage propulsion by 90% and 65% of the total first-stage cost.[39][110] Although SMART reuse was not initially funded for development,[107] from 2021 the higher launch cadence required to launch theProject Kuiper mega constellation provided support for the concept's business case.[111] Consequently, ULA has stated that it plans to begin testing the technology during its launches of the satellite internet constellation, with timing of the tests to be agreed upon with Amazon, the developer of Project Kuiper.[1]

Vulcan Heavy

[edit]

In September 2020, ULA announced they were studying a "Vulcan Heavy" variant with three booster cores. Speculation about a new variant had been rampant for months after an image of a model of that version popped on social media. ULA CEO Tory Bruno later tweeted a clearer image of the model and said it was the subject of ongoing study.[24][112]

See also

[edit]

References

[edit]
  1. ^abcRoulette, Joey (26 January 2024)."Vulcan rocket's debut brings long-awaited challenge to SpaceX dominance". Reuters. Retrieved29 October 2024.
  2. ^abcde"Vulcan Centaur Cutaway Poster"(PDF). ULA.Archived(PDF) from the original on 22 December 2022. Retrieved25 September 2019.
  3. ^Peller, Mark."United Launch Alliance"(PDF). Archived fromthe original(PDF) on 12 April 2016. Retrieved30 March 2016.
  4. ^abcde"Vulcan". United Launch Alliance.Archived from the original on 9 May 2022. Retrieved25 January 2023.
  5. ^Clark, Stephen (12 October 2015)."ULA selects launch pads for new Vulcan rocket". Spaceflight Now.Archived from the original on 14 October 2015. Retrieved12 October 2015.
  6. ^Robinson-Smith, Will (21 December 2023)."ULA stacks Vulcan rocket for the first time ahead of Jan. 8 debut launch".Spaceflight Now.Archived from the original on 22 December 2023. Retrieved22 December 2023.
  7. ^ab@ToryBruno (1 July 2019)."Vulcan is configurable with 0 to 6 SRBs. 2 fairing lengths, the longer, 70 ft fairing having a massive 11,000 cuft (317 cu-m) payload volume" (Tweet) – viaTwitter.
  8. ^Propulsion Products Catalog(PDF).Northrop Grumman. p. 39.
  9. ^abcdeReich, Eugen (2020).Raketen: Die Internationale Enzyklopädie. Motorbuch Verlag. p. 235.ISBN 978-3-613-04260-5.
  10. ^abcPeller, Mark; Wentz, Gary L.; Burkholder, Tom, eds. (16 October 2023)."Vulcan Launch Systems User's Guide"(PDF).United Launch Alliance.Archived(PDF) from the original on 24 September 2024. Retrieved1 October 2024.
  11. ^Jeff Bezos, Tim Dodd (15 August 2024).First Look Inside Blue Origin's New Glenn Factory w/ Jeff Bezos. Event occurs at 1:10:48.
  12. ^Jan. 8 LIVE Broadcast: Vulcan Cert-1.United Launch Alliance. Event occurs at 57:11. Retrieved11 July 2024 – via YouTube.
  13. ^"Vulcan Cert-1".United Launch Alliance. 8 January 2024. Retrieved11 July 2024.
  14. ^abKanayama, Lee (9 May 2022)."As Centaur turns 60 years old, ULA prepares to evolve Centaur V".NASASpaceFlight.com.Archived from the original on 1 August 2023. Retrieved29 May 2022.
  15. ^"United Launch Alliance Selects Aerojet Rocketdyne's RL10 Engine". ULA. 11 May 2018.Archived from the original on 12 May 2018. Retrieved13 May 2018.
  16. ^abFoust, Jeff (28 November 2023)."New RL10 engine to be introduced on Vulcan in 2025".SpaceNews. Retrieved23 December 2024.
  17. ^ab"RL10 Propulsion System Datasheet"(PDF). L3Harris. Retrieved23 December 2024.
  18. ^Berger, Eric (5 January 2024)."As Vulcan nears debut, it's not clear whether ULA will live long and prosper".Ars Technica.Archived from the original on 6 January 2024. Retrieved8 January 2024.
  19. ^Boyer, Charles (6 January 2024)."ULA: Most Vulcan Systems Have Atlas or Delta Heritage".FMN News. Retrieved25 October 2024.
  20. ^Clark, Stephen (21 May 2021)."United Launch Alliance nears first fueling test on Vulcan rocket".Space Flight Now. Retrieved8 June 2021.
  21. ^abde Selding, Peter B. (16 March 2016)."ULA intends to lower its costs, and raise its cool, to compete with SpaceX".SpaceNews.Archived from the original on 17 March 2016. Retrieved19 March 2016.Methane rocket has a lower density so we have a 5.4 meter design outside diameter, while drop back to the Atlas V size for the kerosene AR1 version.
  22. ^Thunnissen, Daniel P.; Guernsey, C. S.; Baker, R. S.; Miyake, R. N. (2004)."Advanced Space Storable Propellants for Outer Planet Exploration"(PDF).American Institute of Aeronautics and Astronautics (4–0799): 28. Archived fromthe original(PDF) on 10 March 2016.
  23. ^"Blue Origin BE-4 Engine".Archived from the original on 1 October 2021. Retrieved14 June 2019.We chose LNG because it is highly efficient, low cost and widely available. Unlike kerosene, LNG can be used to self-pressurize its tank. Known as autogenous repressurization, this eliminates the need for costly and complex systems that draw on Earth's scarce helium reserves. LNG also possesses clean combustion characteristics even at low throttle, simplifying engine reuse compared to kerosene fuels.
  24. ^abcdefFoust, Jeff (11 September 2020)."ULA studying long-term upgrades to Vulcan".SpaceNews.Archived from the original on 8 January 2024. Retrieved4 March 2021."ACES work has its fingerprints in our new version of Centaur, the Centaur 5 we're fielding with Vulcan. Those studies five, eight years ago certainly served us well, and it put us on a good path forward here for the evolution of our upper stages. We will continue to evolve our upper stage to meet the needs of the market going forward".
  25. ^Rhian, Jason (23 September 2015)."ULA selects Orbital ATK's GEM 63/63 XL SRBs for Atlas V and Vulcan boosters". Spaceflight Insider.Archived from the original on 11 January 2016. Retrieved25 September 2015.
  26. ^"ULA Rocket Rundown"(PDF).United Launch Alliance. March 2022. Retrieved27 June 2024.
  27. ^"Atlas V". United Launch Alliance. Retrieved10 December 2022.
  28. ^"Delta IV Launch Services User's Guide – June 2013"(PDF). United Launch Alliance. 4 June 2013. pp. 2–10,5–3. Archived fromthe original(PDF) on 14 October 2013. Retrieved31 October 2020.
  29. ^"Beyond Gravity Celebrates the Successful Launch of ULA's Vulcan Centaur Rocket".Beyond Gravity. 9 January 2024. Retrieved13 December 2024.
  30. ^Bruno, Tory [@torybruno] (30 August 2016)."@A_M_Swallow @ULA_ACES We intend to human rate Vulcan/ACES" (Tweet). Retrieved30 August 2016 – viaTwitter.
  31. ^Shalal, Andrea (21 May 2015)."Lockheed-Boeing rocket venture needs commercial orders to survive".Yahoo! News. Archived fromthe original on 23 July 2015.
  32. ^abAvery, Greg (16 October 2014)."ULA plans new rocket, restructuring to cut launch costs in half".Denver Business Journal.Archived from the original on 15 March 2017. Retrieved14 November 2014.
  33. ^Erwin, Sandra (19 August 2021)."National security launch in transition as Space Force waits for Vulcan".SpaceNews. Retrieved16 June 2024.
  34. ^"Blue Origin's BE-4 Engine Selected by ULA to Power Vulcan".Blue Origin. Retrieved17 November 2024.
  35. ^abFleischauer, Eric (7 February 2015)."ULA's CEO talks challenges, engine plant plans for Decatur".Decatur Daily.Archived from the original on 12 June 2017. Retrieved17 April 2015.
  36. ^Ferster, Warren (17 September 2014)."ULA To Invest in Blue Origin Engine as RD-180 Replacement".SpaceNews. Archived fromthe original on 18 September 2014. Retrieved17 April 2015.
  37. ^abNeal, Mihir (8 June 2020)."Vulcan on track as ULA eyes early – 2021 test flight to the Moon".NASASpaceFlight.com.Archived from the original on 9 June 2020. Retrieved9 June 2020.
  38. ^abcGruss, Mike (13 April 2015)."ULA's Vulcan Rocket To be Rolled out in Stages".SpaceNews. Retrieved17 April 2015.
  39. ^abRay, Justin (14 April 2015)."ULA chief explains reusability and innovation of new rocket". Spaceflight Now.Archived from the original on 17 April 2015. Retrieved17 April 2015.
  40. ^abGruss, Mike (10 March 2016)."ULA's parent companies still support Vulcan ... with caution".SpaceNews.Archived from the original on 8 January 2024. Retrieved10 March 2016.
  41. ^abErwin, Sandra (10 October 2018)."Air Force awards launch vehicle development contracts to Blue Origin, Northrop Grumman, ULA".SpaceNews.Archived from the original on 11 October 2018. Retrieved28 July 2020.
  42. ^abErwin, Sandra (25 March 2018)."Air Force stakes future on privately funded launch vehicles. Will the gamble pay off?".SpaceNews.Archived from the original on 21 August 2015. Retrieved24 June 2018.
  43. ^"Boeing, Lockheed Differ on Whether to Sell Rocket Joint Venture".THE Wall Street Journal. 10 September 2015.Archived from the original on 15 April 2017. Retrieved12 September 2015.
  44. ^Tribou, Richard (11 May 2018)."ULA chooses Aerojet Rocketdyne over Blue Origin for Vulcan's upper stage engine".Orlando Sentinel.Archived from the original on 13 May 2018. Retrieved13 May 2018.
  45. ^"United Launch Alliance Building Rocket of the Future with Industry-Leading Strategic Partnerships – ULA Selects Blue Origin Advanced Booster Engine for Vulcan Centaur Rocket System" (Press release). United Launch Alliance. 27 September 2018.Archived from the original on 6 October 2018. Retrieved5 October 2018.
  46. ^Johnson, Eric M.; Roulette, Joey (27 September 2018)."Jeff Bezos' Blue Origin to supply engines for Vulcan rocket".Reuters.Archived from the original on 28 September 2018. Retrieved28 September 2018.
  47. ^Foust, Jeff (25 October 2018)."ULA now planning first launch of Vulcan in 2021".SpaceNews.Archived from the original on 8 January 2024. Retrieved11 November 2018.
  48. ^@jeff_foust (18 January 2018)."Tom Tshudy, ULA: with Vulcan we plan to maintain reliability and on-time performance of our existing rockets, but at a very affordable price. First launch mid-2020" (Tweet) – viaTwitter.
  49. ^@ToryBruno (6 August 2019)."Mighty Atlas is not the only thing rolling at the Cape today. Check the new Vulcan MLP arrival" (Tweet) – viaTwitter.
  50. ^@ULAlaunch (6 August 2019)."The MLP will transport #VulcanCentaur Vertical Integration Facility to SLC-41 using heritage undercarriage dollies used for Titan III, Titan IV and #AtlasV and will move at 3 mph. #VulcanCentaur" (Tweet) – viaTwitter.
  51. ^"Three rockets depart factory aboard RocketShip". United Launch Alliance. 4 February 2021.Archived from the original on 5 February 2021. Retrieved6 February 2021.
  52. ^"Vulcan: Pathfinder fueling tests planned".blog.ulalaunch.com.Archived from the original on 7 April 2022. Retrieved11 April 2022.
  53. ^"Vulcan: First demonstration of launch day completed".blog.ulalaunch.com.Archived from the original on 14 April 2022. Retrieved24 April 2022.
  54. ^Chow, Denise (4 February 2023)."Bigger, faster, farther: A batch of new rockets is set to blast into space this year". NBC News.Archived from the original on 4 February 2023. Retrieved14 February 2023.
  55. ^"Astrobotic Selects United Launch Alliance Vulcan Centaur Rocket to Launch its First Mission to the Moon". ULA Launch. 19 August 2019.Archived from the original on 19 August 2019. Retrieved19 August 2019.
  56. ^"Bezos' Blue Origin to deliver first flight-ready rocket engines next summer".Reuters. 17 December 2020. Archived fromthe original on 22 December 2020. Retrieved20 December 2020.
  57. ^Weapon Systems Annual Assessment(PDF) (Report). US Government Accountability Office (GAO). 8 June 2021. p. 106. GAO-21-222.Archived(PDF) from the original on 24 June 2021. Retrieved23 June 2021....a U.S. produced rocket engine under development for ULA's Vulcan launch vehicle is experiencing technical challenges related to the igniter and booster capabilities required and may not be qualified in time to support first launches beginning in 2021.
  58. ^Irene Klotz [@Free_Space] (18 June 2021)."Debut launch of @ulalaunch Vulcan slipping to 2022 as customer @astrobotic needs more time to prep Peregrine lunar lander. "Covid presented a lot of problems for the entire space supply chain," CEO John Thornton tells @aviationweek "We're just doing the best we can."" (Tweet) – viaTwitter.
  59. ^Roulette, Joey (10 October 2022)."United Launch Alliance's debut Vulcan mission slips to 2023 -CEO". Reuters.Archived from the original on 10 October 2022. Retrieved11 October 2022.
  60. ^Foust, Jeff (24 June 2023)."First Vulcan launch further delayed for Centaur modifications".Spacenews.Archived from the original on 8 January 2024. Retrieved24 June 2023.
  61. ^Foust, Jeff (24 October 2023)."ULA sets Christmas Eve launch date for first Vulcan Centaur".SpaceNews.Archived from the original on 8 January 2024. Retrieved24 October 2023.
  62. ^Foust, Jeff (8 January 2024)."Vulcan Centaur launches Peregrine lunar lander on inaugural mission".Spacenews.Archived from the original on 8 January 2024. Retrieved8 January 2024.
  63. ^McCrea, Aaron (8 January 2024)."Vulcan successfully launches Peregrine lunar lander on inaugural flight".NASASpaceFlight.com.Archived from the original on 8 January 2024. Retrieved8 January 2024.
  64. ^"Update #8 for Peregrine Mission One".Astrobotic. 9 January 2024.Archived from the original on 12 January 2024. Retrieved12 January 2024.
  65. ^"SNC Selects ULA for Dream Chaser® Spacecraft Launches: NASA Missions to Begin in 2021". ULA Launch. 14 August 2019.Archived from the original on 14 August 2019. Retrieved14 August 2019.
  66. ^Irene Klotz; Garrett Reim (25 October 2023)."ULA Sets Dec. 24 As Target Date For Vulcan's Debut".Aviation Week Network.Archived from the original on 28 December 2023. Retrieved11 January 2024.
  67. ^Jeff Foust (5 January 2024)."Vulcan on the pad for its first launch".Spacenews. Retrieved8 January 2024.
  68. ^"Contracts for August 7, 2020". U.S. DEPARTMENT OF DEFENSE.Archived from the original on 20 September 2020. Retrieved9 August 2020.Public Domain This article incorporates text from this source, which is in thepublic domain.
  69. ^Erwin, Sandra (20 May 2021)."With ULA's new rocket Vulcan behind schedule, Space Force agrees to let Atlas 5 fill in".SpaceNews.Archived from the original on 8 January 2024. Retrieved22 May 2021.
  70. ^Clark, Stephen (7 August 2023)."Amazon shifts launch of its first Internet satellites to Atlas V rocket".Ars Technica.Archived from the original on 7 August 2023. Retrieved7 August 2023.
  71. ^Erwin, Sandra (13 May 2024)."ULA could fly dummy payload on next Vulcan launch if Dream Chaser is delayed".SpaceNews. Retrieved14 May 2024.
  72. ^"Lockheed-Boeing Alliance Hit With US Fine for Launch Delays".Bloomberg. 14 May 2024. Retrieved15 May 2024.
  73. ^Davenport, Christian (13 May 2024)."Pentagon worried its primary satellite launcher can't keep pace".Washington Post.ISSN 0190-8286. Retrieved28 June 2024.
  74. ^Decker, Audrey (26 June 2024)."ULA owners add 'review team' after Pentagon airs concerns about launch schedule".Defense One. Retrieved28 June 2024.
  75. ^abcClark, Stephen (4 October 2024)."ULA's second Vulcan rocket lost part of its booster and kept going".Ars Technica. Retrieved4 October 2024.
  76. ^abFoust, Jeff (4 October 2024)."Vulcan competes second flight despite SRB anomaly".SpaceNews. Retrieved4 October 2024.
  77. ^Berger, Eric (26 March 2025)."With Vulcan's certification, Space Force is no longer solely reliant on SpaceX".Ars Technica. Retrieved27 March 2025.
  78. ^ab"Vulcan Centaur".ulalaunch.com.Archived from the original on 25 February 2021. Retrieved3 March 2021.
  79. ^"Vulcan Launch Systems User's Guide"(PDF). October 2023.Archived(PDF) from the original on 16 April 2024.
  80. ^Space and Missile Systems (5 October 2018)."EELV LSA RFP OTA". Archived fromthe original on 3 February 2019. Retrieved22 June 2019.table 10 of page 27
  81. ^McCrea, Aaron (8 January 2024)."Vulcan successfully launches Peregrine lunar lander on inaugural flight".NASASpaceFlight. Retrieved8 January 2024.
  82. ^"The first US Moon landing in more than 50 years has hit a major hurdle after a 'critical' fuel leak".ABC News (Australia). 9 January 2024. Retrieved9 January 2024.
  83. ^Berger, Eric (22 July 2024)."A mid-September test flight of Vulcan could permit a military launch this year".Ars Technica. Retrieved23 July 2024.
  84. ^"Vulcan Cert-2".United Launch Alliance. Retrieved3 September 2024.
  85. ^Clark, Stephen (22 October 2024)."Space Force is "assessing" impacts to Vulcan schedule".Ars Technica. Retrieved23 October 2024.It was a successful Cert flight, and now we're knee deep in finalizing certification
  86. ^Foust, Jeff (12 March 2025)."Manufacturing defect blamed for Vulcan solid rocket motor anomaly".SpaceNews. Retrieved22 March 2025.
  87. ^abBaylor, Michael."Upcoming Launches: Vulcan".Next Spaceflight. Retrieved3 September 2024.
  88. ^Erwin, Sandra (9 April 2022)."Air Force space experiment will seek to demonstrate multi-orbit satellite navigation".SpaceNews. Retrieved30 August 2022.
  89. ^@GewoonLukas_ (24 June 2024)."The first one will be the USSF-106 mission. This launch will carry the NTS-3 satellite, along with another currently unidentified payload, directly to Geosynchronous orbit. It currently looks like Vulcan will be flying in the VC4 configuration for this mission" (Tweet) – viaTwitter.
  90. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasKrebs, Gunter (19 December 2023)."Vulcan".Gunter's Space Page. Retrieved6 January 2024.
  91. ^Erwin, Sandra (27 February 2023)."Air Force navigation satellite to launch on Vulcan's first national security mission".SpaceNews. Retrieved27 February 2023.
  92. ^"FY21 NSS Missions". U.S. Department of Defense. Retrieved6 January 2024.
  93. ^@GewoonLukas_ (24 June 2024)."The second one will be the USSF-87 mission, which will likely carry the 7th GSSAP satellite directly to Geosynchronous orbit. It currently looks like Vulcan will be flying in the VC2 configuration for this mission, although a VC4 has been previously reported" (Tweet) – viaTwitter.
  94. ^abcdeErwin, Sandra (8 June 2023)."Space Force assigns 12 national security missions to SpaceX and ULA".SpaceNews. Retrieved6 January 2024.
  95. ^abcdefghijErwin, Sandra (31 October 2023)."Space Force assigns 21 national security missions to ULA and SpaceX".SpaceNews. Retrieved6 January 2024.
  96. ^abcdefghi@thesheetztweetz (1 November 2023)."And, for those curious, here's the rundown of the 21 mission assignments:" (Tweet) – viaTwitter.
  97. ^ab"Rocket Launch Manifest".Next Spaceflight. 14 June 2024. Retrieved14 June 2024.
  98. ^ab@torybruno (16 May 2024)."Likely a 2 solid. When the Gov wants to go" (Tweet) – viaTwitter.
  99. ^abcdhttps://www.ssc.spaceforce.mil/Newsroom/Article-Display/Article/2744342/space-systems-command-declares-three-gps-iii-space-vehicles-available-for-launch
  100. ^Erwin, Sandra (9 April 2024)."Northrop Grumman developing military communications satellite for 2025 launch".SpaceNews. Retrieved17 July 2024.
  101. ^Erwin, Sandra (13 April 2023)."Boeing unveils WGS-11 design with new military payload".SpaceNews. Retrieved6 January 2024.
  102. ^Foust, Jeff (26 July 2023)."NASA and DARPA select Lockheed Martin to develop DRACO nuclear propulsion demo".SpaceNews. Retrieved11 January 2024.
  103. ^"Space Systems Command announces 21 mission assignments for National Security Space Launch Phase 2 Procurement"(PDF). 31 October 2023. Retrieved6 January 2024.
  104. ^abcErwin, Sandra (30 May 2022)."Space Force identifies national security launches funded in 2022 and 2023".SpaceNews. Retrieved6 January 2024.
  105. ^Foust, Jeff (29 April 2022)."First Dream Chaser vehicle takes shape".SpaceNews. Retrieved6 January 2024.
  106. ^"Amazon Signs Contract with United Launch Alliance for 38 Project Kuiper Launches on Vulcan Centaur".ULA. 5 April 2022. Retrieved6 January 2024.
  107. ^abcHenry, Caleb (20 November 2019)."ULA gets vague on Vulcan upgrade timeline".SpaceNews.Archived from the original on 8 January 2024. Retrieved20 June 2020.
  108. ^"America, meet Vulcan, your next United Launch Alliance rocket".Denver Post. 13 April 2015.Archived from the original on 17 April 2015. Retrieved17 April 2015.
  109. ^abErwin, Sandra (7 April 2021)."Bruno: The next big thing for ULA is a long-endurance upper stage".SpaceNews.Archived from the original on 8 January 2024. Retrieved7 July 2021.
  110. ^abcKlotz, Irene (20 July 2022)."ULA Refines Plan To Reuse Vulcan Rocket Engines".Aviation Week.Archived from the original on 21 July 2022. Retrieved21 July 2022.
  111. ^"The Space Review: A megaconstellation megadeal".www.thespacereview.com.Archived from the original on 14 April 2022. Retrieved8 June 2022.
  112. ^Bruno, Tory [@torybruno] (20 July 2020)."By demand of the Internet, here is the uncropped picture of the #MarsPerseverance flip flops. Just a model. Related to a routine, ongoing trade study. Nothing more" (Tweet) – viaTwitter.

External links

[edit]
Wikimedia Commons has media related toVulcan (rocket).
Parent companies
Atlas V
Launch vehicles
In service
Retired
Rocket stages
Launch facilities
Current
Former
Key people
Related
Current
In development
Retired
Classes
  • This template lists historical, current, and future space rockets that at least once attempted (but not necessarily succeeded in) an orbital launch or that are planned to attempt such a launch in the future
  • Symbol indicates past or current rockets that attempted orbital launches but never succeeded (never did or has yet to perform a successful orbital launch)
Orbitallaunch systems developed in the United States
Active
In development
Retired
  • * - Japanese projects using US rockets or stages
  • ** - uses Russian engines
  • - never succeeded
  • †† - no new orders accepted
  • ††† - used Ukrainian first stage
Launch systems
Active
Retired
In development
Proposals
Canceled
Spacecraft
Active
Retired
In development
Proposals
Cancelled
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vulcan_Centaur&oldid=1282976907"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp