Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vis-viva equation

From Wikipedia, the free encyclopedia
Concept in gravitational orbital mechanics

Part of a series on
Astrodynamics
Efficiency measures

Inastrodynamics, thevis-viva equation is one of the equations that model themotion of orbiting bodies. It is the direct result of the principle ofconservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surroundinggravitational field.

Vis viva (Latin for "living force") is a term from the history of mechanics and this name is given to the orbital equation originally derived byIsaac Newton.[1]: 30  It represents the principle that the difference between the totalwork of theacceleratingforces of asystem and that of the retarding forces is equal to one half thevis viva accumulated or lost in the system while the work is being done.

Formulation

[edit]

For anyKeplerian orbit (elliptic,parabolic,hyperbolic, orradial), thevis-viva equation[1]: 30  is as follows:[2]: 30 v2=GM(2r1a){\displaystyle v^{2}=GM\left({2 \over r}-{1 \over a}\right)}where:

The product ofGM can also be expressed as thestandard gravitational parameter using the Greek letterμ.[1]: 33 

Practical applications

[edit]

Given the total mass and the scalarsr andv at a single point of the orbit, one can compute:

  • r andv at any other point in the orbit; and
  • thespecific orbital energyε{\displaystyle \varepsilon \,\!}, allowing an object orbiting a larger object to be classified as having not enough energy to remain in orbit, hence being "suborbital" (a ballistic missile, for example), having enough energy to be "orbital", but without the possibility to complete a full orbit anyway because it eventually collides with the other body, or having enough energy to come from and/or go to infinity (as a meteor, for example).

The formula forescape velocity can be obtained from the Vis-viva equation by taking the limit asa{\displaystyle a} approaches{\displaystyle \infty }:ve2=GM(2r0)ve=2GMr{\displaystyle v_{e}^{2}=GM\left({\frac {2}{r}}-0\right)\rightarrow v_{e}={\sqrt {\frac {2GM}{r}}}}For a given orbital radius, the escape velocity will be2{\displaystyle {\sqrt {2}}} times the orbital velocity.[1]: 32 

Derivation for elliptic orbits (0 ≤ eccentricity < 1)

[edit]

Specific total energy is constant throughout the orbit. Thus, using the subscriptsa andp to denote apoapsis (apogee) and periapsis (perigee), respectively,ε=va22GMra=vp22GMrp{\displaystyle \varepsilon ={\frac {v_{a}^{2}}{2}}-{\frac {GM}{r_{a}}}={\frac {v_{p}^{2}}{2}}-{\frac {GM}{r_{p}}}}

Rearranging,va22vp22=GMraGMrp{\displaystyle {\frac {v_{a}^{2}}{2}}-{\frac {v_{p}^{2}}{2}}={\frac {GM}{r_{a}}}-{\frac {GM}{r_{p}}}}

Recalling that for an elliptical orbit (and hence also a circular orbit) the velocity and radius vectors are perpendicular at apoapsis and periapsis, conservation of angular momentum requires specific angular momentumh=rpvp=rava=constant{\displaystyle h=r_{p}v_{p}=r_{a}v_{a}={\text{constant}}}, thusvp=rarpva{\displaystyle v_{p}={\frac {r_{a}}{r_{p}}}v_{a}}:12(1ra2rp2)va2=GMraGMrp{\displaystyle {\frac {1}{2}}\left(1-{\frac {r_{a}^{2}}{r_{p}^{2}}}\right)v_{a}^{2}={\frac {GM}{r_{a}}}-{\frac {GM}{r_{p}}}}12(rp2ra2rp2)va2=GMraGMrp{\displaystyle {\frac {1}{2}}\left({\frac {r_{p}^{2}-r_{a}^{2}}{r_{p}^{2}}}\right)v_{a}^{2}={\frac {GM}{r_{a}}}-{\frac {GM}{r_{p}}}}

Isolating the kinetic energy at apoapsis and simplifying,12va2=(GMraGMrp)rp2rp2ra212va2=GM(rprararp)rp2rp2ra212va2=GMrpra(rp+ra){\displaystyle {\begin{aligned}{\frac {1}{2}}v_{a}^{2}&=\left({\frac {GM}{r_{a}}}-{\frac {GM}{r_{p}}}\right)\cdot {\frac {r_{p}^{2}}{r_{p}^{2}-r_{a}^{2}}}\\{\frac {1}{2}}v_{a}^{2}&=GM\left({\frac {r_{p}-r_{a}}{r_{a}r_{p}}}\right){\frac {r_{p}^{2}}{r_{p}^{2}-r_{a}^{2}}}\\{\frac {1}{2}}v_{a}^{2}&=GM{\frac {r_{p}}{r_{a}(r_{p}+r_{a})}}\end{aligned}}}

From the geometry of an ellipse,2a=rp+ra{\displaystyle 2a=r_{p}+r_{a}} wherea is the length of the semimajor axis. Thus,12va2=GM2arara(2a)=GM(1ra12a)=GMraGM2a{\displaystyle {\frac {1}{2}}v_{a}^{2}=GM{\frac {2a-r_{a}}{r_{a}(2a)}}=GM\left({\frac {1}{r_{a}}}-{\frac {1}{2a}}\right)={\frac {GM}{r_{a}}}-{\frac {GM}{2a}}}

Substituting this into our original expression for specific orbital energy,ε=v22GMr=vp22GMrp=va22GMra=GM2a{\displaystyle \varepsilon ={\frac {v^{2}}{2}}-{\frac {GM}{r}}={\frac {v_{p}^{2}}{2}}-{\frac {GM}{r_{p}}}={\frac {v_{a}^{2}}{2}}-{\frac {GM}{r_{a}}}=-{\frac {GM}{2a}}}

Thus,ε=GM2a{\displaystyle \varepsilon =-{\frac {GM}{2a}}} and the vis-viva equation may be writtenv22GMr=GM2a{\displaystyle {\frac {v^{2}}{2}}-{\frac {GM}{r}}=-{\frac {GM}{2a}}}orv2=GM(2r1a){\displaystyle v^{2}=GM\left({\frac {2}{r}}-{\frac {1}{a}}\right)}

Therefore, the conservedangular momentumL =mh can be derived usingra+rp=2a{\displaystyle r_{a}+r_{p}=2a} andrarp=b2{\displaystyle r_{a}r_{p}=b^{2}}, wherea issemi-major axis andb issemi-minor axis of the elliptical orbit, as follows:va2=GM(2ra1a)=GMa(2arara)=GMa(rpra)=GMa(bra)2{\displaystyle v_{a}^{2}=GM\left({\frac {2}{r_{a}}}-{\frac {1}{a}}\right)={\frac {GM}{a}}\left({\frac {2a-r_{a}}{r_{a}}}\right)={\frac {GM}{a}}\left({\frac {r_{p}}{r_{a}}}\right)={\frac {GM}{a}}\left({\frac {b}{r_{a}}}\right)^{2}}and alternately,vp2=GM(2rp1a)=GMa(2arprp)=GMa(rarp)=GMa(brp)2{\displaystyle v_{p}^{2}=GM\left({\frac {2}{r_{p}}}-{\frac {1}{a}}\right)={\frac {GM}{a}}\left({\frac {2a-r_{p}}{r_{p}}}\right)={\frac {GM}{a}}\left({\frac {r_{a}}{r_{p}}}\right)={\frac {GM}{a}}\left({\frac {b}{r_{p}}}\right)^{2}}

Therefore, specific angular momentumh=rpvp=rava=bGMa{\displaystyle h=r_{p}v_{p}=r_{a}v_{a}=b{\sqrt {\frac {GM}{a}}}}, and

Total angular momentumL=mh=mbGMa{\displaystyle L=mh=mb{\sqrt {\frac {GM}{a}}}}

References

[edit]
  1. ^abcdLogsdon, Thomas S.; Logsdon, Tom (1998).Orbital mechanics: theory and applications. A Wiley-Interscience publication. New York, NY: Wiley.ISBN 978-0-471-14636-0.{{cite book}}: CS1 maint: date and year (link)
  2. ^Lissauer, Jack J.; de Pater, Imke (2019).Fundamental Planetary Sciences : physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 29–31.ISBN 9781108411981.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vis-viva_equation&oldid=1278234691"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp