Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Theta representation

From Wikipedia, the free encyclopedia

Inmathematics, thetheta representation is a particular representation of theHeisenberg group ofquantum mechanics. It gains its name from the fact that theJacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized byDavid Mumford.

Construction

[edit]

The theta representation is a representation of the continuous Heisenberg groupH3(R){\displaystyle H_{3}(\mathbb {R} )} over the field of the real numbers. In this representation, the group elements act on a particularHilbert space. The construction below proceeds first by definingoperators that correspond to the Heisenberg group generators. Next, the Hilbert space on which these act is defined, followed by a demonstration of theisomorphism to the usual representations.

Group generators

[edit]

Letf(z) be aholomorphic function, leta andb bereal numbers, and letτ{\displaystyle \tau } be an arbitrary fixed complex number in theupper half-plane; that is, so that the imaginary part ofτ{\displaystyle \tau } is positive. Define the operatorsSa andTb such that they act on holomorphic functions as(Saf)(z)=f(z+a)=exp(az)f(z){\displaystyle (S_{a}f)(z)=f(z+a)=\exp(a\partial _{z})f(z)}and(Tbf)(z)=exp(iπb2τ+2πibz)f(z+bτ)=exp(iπb2τ+2πibz+bτz)f(z).{\displaystyle (T_{b}f)(z)=\exp(i\pi b^{2}\tau +2\pi ibz)f(z+b\tau )=\exp(i\pi b^{2}\tau +2\pi ibz+b\tau \partial _{z})f(z).}

It can be seen that each operator generates a one-parameter subgroup:Sa1(Sa2f)=(Sa1Sa2)f=Sa1+a2f{\displaystyle S_{a_{1}}\left(S_{a_{2}}f\right)=\left(S_{a_{1}}\circ S_{a_{2}}\right)f=S_{a_{1}+a_{2}}f}andTb1(Tb2f)=(Tb1Tb2)f=Tb1+b2f.{\displaystyle T_{b_{1}}\left(T_{b_{2}}f\right)=\left(T_{b_{1}}\circ T_{b_{2}}\right)f=T_{b_{1}+b_{2}}f.}

However,S andT do not commute:SaTb=exp(2πiab)TbSa.{\displaystyle S_{a}\circ T_{b}=\exp(2\pi iab)T_{b}\circ S_{a}.}

Thus we see thatS andT together with aunitary phase form anilpotentLie group, the (continuous real)Heisenberg group, parametrizable asH=U(1)×R×R{\displaystyle H=U(1)\times \mathbb {R} \times \mathbb {R} } whereU(1) is theunitary group.

A general group elementUτ(λ,a,b)H{\displaystyle U_{\tau }(\lambda ,a,b)\in H} then acts on a holomorphic functionf(z) asUτ(λ,a,b)f(z)=λ(SaTbf)(z)=λexp(iπb2τ+2πibz)f(z+a+bτ){\displaystyle U_{\tau }(\lambda ,a,b)f(z)=\lambda (S_{a}\circ T_{b}f)(z)=\lambda \exp(i\pi b^{2}\tau +2\pi ibz)f(z+a+b\tau )}whereλU(1).{\displaystyle \lambda \in U(1).}U(1)=Z(H){\displaystyle U(1)=Z(H)} is thecenter ofH, thecommutator subgroup[H,H]{\displaystyle [H,H]}. The parameterτ{\displaystyle \tau } onUτ(λ,a,b){\displaystyle U_{\tau }(\lambda ,a,b)} serves only to remind that every different value ofτ{\displaystyle \tau } gives rise to a different representation of the action of the group.

Hilbert space

[edit]

The action of the group elementsUτ(λ,a,b){\displaystyle U_{\tau }(\lambda ,a,b)} is unitary and irreducible on a certain Hilbert space of functions. For a fixed value of τ, define a norm onentire functions of thecomplex plane as

fτ2=Cexp(2πy2τ)|f(x+iy)|2 dx dy.{\displaystyle \Vert f\Vert _{\tau }^{2}=\int _{\mathbb {C} }\exp \left({\frac {-2\pi y^{2}}{\Im \tau }}\right)|f(x+iy)|^{2}\ dx\ dy.}

Here,τ{\displaystyle \Im \tau } is the imaginary part ofτ{\displaystyle \tau } and the domain of integration is the entire complex plane. LetHτ{\displaystyle {\mathcal {H}}_{\tau }} be the set of entire functionsf with finite norm. The subscriptτ{\displaystyle \tau } is used only to indicate that the space depends on the choice of parameterτ{\displaystyle \tau }. ThisHτ{\displaystyle {\mathcal {H}}_{\tau }} forms aHilbert space. The action ofUτ(λ,a,b){\displaystyle U_{\tau }(\lambda ,a,b)} given above is unitary onHτ{\displaystyle {\mathcal {H}}_{\tau }}, that is,Uτ(λ,a,b){\displaystyle U_{\tau }(\lambda ,a,b)} preserves the norm on this space. Finally, the action ofUτ(λ,a,b){\displaystyle U_{\tau }(\lambda ,a,b)} onHτ{\displaystyle {\mathcal {H}}_{\tau }} isirreducible.

This norm is closely related to that used to defineSegal–Bargmann space[citation needed].

Isomorphism

[edit]

The abovetheta representation of the Heisenberg group is isomorphic to the canonicalWeyl representation of the Heisenberg group. In particular, this implies thatHτ{\displaystyle {\mathcal {H}}_{\tau }} andL2(R){\displaystyle L^{2}(\mathbb {R} )} areisomorphic asH-modules. LetM(a,b,c)=[1ac01b001]{\displaystyle M(a,b,c)={\begin{bmatrix}1&a&c\\0&1&b\\0&0&1\end{bmatrix}}}stand for a general group element ofH3(R).{\displaystyle H_{3}(\mathbb {R} ).} In the canonical Weyl representation, for every real numberh, there is a representationρh{\displaystyle \rho _{h}} acting onL2(R){\displaystyle L^{2}(\mathbb {R} )} asρh(M(a,b,c))ψ(x)=exp(ibx+ihc)ψ(x+ha){\displaystyle \rho _{h}(M(a,b,c))\psi (x)=\exp(ibx+ihc)\psi (x+ha)} forxR{\displaystyle x\in \mathbb {R} } andψL2(R).{\displaystyle \psi \in L^{2}(\mathbb {R} ).}

Here,h is thePlanck constant. Each such representation isunitarily inequivalent. The corresponding theta representation is:M(a,0,0)Sah{\displaystyle M(a,0,0)\to S_{ah}}M(0,b,0)Tb/2π{\displaystyle M(0,b,0)\to T_{b/2\pi }}M(0,0,c)eihc{\displaystyle M(0,0,c)\to e^{ihc}}

Discrete subgroup

[edit]

Define the subgroupΓτHτ{\displaystyle \Gamma _{\tau }\subset H_{\tau }} asΓτ={Uτ(1,a,b)Hτ:a,bZ}.{\displaystyle \Gamma _{\tau }=\{U_{\tau }(1,a,b)\in H_{\tau }:a,b\in \mathbb {Z} \}.}

TheJacobi theta function is defined asϑ(z;τ)=n=exp(πin2τ+2πinz).{\displaystyle \vartheta (z;\tau )=\sum _{n=-\infty }^{\infty }\exp(\pi in^{2}\tau +2\pi inz).}

It is anentire function ofz that isinvariant underΓτ.{\displaystyle \Gamma _{\tau }.} This follows from the properties of the theta function:ϑ(z+1;τ)=ϑ(z;τ){\displaystyle \vartheta (z+1;\tau )=\vartheta (z;\tau )}andϑ(z+a+bτ;τ)=exp(πib2τ2πibz)ϑ(z;τ){\displaystyle \vartheta (z+a+b\tau ;\tau )=\exp(-\pi ib^{2}\tau -2\pi ibz)\vartheta (z;\tau )}whena andb are integers. It can be shown that the Jacobi theta is the unique such function.

See also

[edit]

References

[edit]
  • David Mumford,Tata Lectures on Theta I (1983), Birkhäuser, BostonISBN 3-7643-3109-7
Retrieved from "https://en.wikipedia.org/w/index.php?title=Theta_representation&oldid=1269415236"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp