Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Systematics

From Wikipedia, the free encyclopedia
Branch of biology
"Systematic biology" redirects here. For the journal, seeSystematic Biology. For other uses, seeSystematics (disambiguation).
A comparison of phylogenetic and phenetic (character-based) concepts

Systematics is the study of the diversification of living forms, both past and present, and therelationships among living things through time. Relationships are visualized as evolutionary trees (synonyms:phylogenetic trees, phylogenies). Phylogenies have two components: branching order (showing group relationships, graphically represented incladograms) and branch length (showing amount of evolution). Phylogenetic trees of species and highertaxa are used to study the evolution of traits (e.g., anatomical or molecular characteristics) and the distribution of organisms (biogeography). Systematics, in other words, is used to understand the evolutionary history of life on Earth.

The word systematics is derived from the Latin word of Ancient Greek originsystema, which means systematic arrangement of organisms.Carl Linnaeus used 'Systema Naturae' as the title of his book.

Branches and applications

[edit]

In the study of biological systematics, researchers use the different branches to further understand the relationships between differing organisms. These branches are used to determine the applications and uses for modern day systematics.[citation needed]

Biological systematics classifies species by using three specific branches.Numerical systematics, orbiometry, uses biological statistics to identify and classify animals.Biochemical systematics classifies and identifies animals based on the analysis of the material that makes up the living part of a cell—such as thenucleus,organelles, andcytoplasm.Experimental systematics identifies and classifies animals based on the evolutionary units that comprise a species, as well as their importance in evolution itself. Factors such as mutations, genetic divergence, and hybridization all are considered evolutionary units.[1]

With the specific branches, researchers are able to determine the applications and uses for modern-day systematics. These applications include:

  • Studying the diversity of organisms and the differentiation between extinct and living creatures. Biologists study the well-understood relationships by making many different diagrams and "trees" (cladograms, phylogenetic trees, phylogenies, etc.).
  • Including the scientific names of organisms, species descriptions and overviews, taxonomic orders, and classifications of evolutionary and organism histories.
  • Explaining the biodiversity of the planet and its organisms. The systematic study is that of conservation.
  • Manipulating and controlling the natural world. This includes the practice of 'biological control', the intentional introduction of natural predators and disease.[1]

Definition and relation with taxonomy

[edit]

John Lindley provided an early definition of systematics in 1830, although he wrote of "systematic botany" rather than using the term "systematics".[2]

In 1970 Micheneret al. defined "systematic biology" and "taxonomy" (terms that are often confused and used interchangeably) in relationship to one another as follows:[3]

Systematic biology (hereafter called simply systematics) is the field that (a) provides scientific names for organisms, (b) describes them, (c) preserves collections of them, (d) provides classifications for the organisms, keys for their identification, and data on their distributions, (e) investigates their evolutionary histories, and (f) considers their environmental adaptations. This is a field with a long history that in recent years has experienced a notable renaissance, principally with respect to theoretical content. Part of the theoretical material has to do with evolutionary areas (topics e and f above), the rest relates especially to the problem of classification. Taxonomy is that part of Systematics concerned with topics (a) to (d) above.

The term "taxonomy" was coined byAugustin Pyramus de Candolle[4] while the term "systematic" was coined byCarl Linnaeus the father of taxonomy.[citation needed]

Taxonomy, systematic biology, systematics, biosystematics, scientific classification, biological classification, phylogenetics: At various times in history, all these words have had overlapping, related meanings. However, in modern usage, they can all be considered synonyms of each other.

For example, Webster's 9th New Collegiate Dictionary of 1987 treats "classification", "taxonomy", and "systematics" as synonyms. According to this work, the terms originated in 1790,c. 1828, and in 1888 respectively. Some[who?] claim systematics alone deals specifically with relationships through time, and that it can be synonymous withphylogenetics, broadly dealing with the inferred hierarchy[citation needed] of organisms. This means it would be a subset of taxonomy as it is sometimes regarded, but the inverse is claimed by others.[who?]

Europeans tend to use the terms "systematics" and "biosystematics" for the study of biodiversity as a whole, whereas North Americans tend to use "taxonomy" more frequently.[5] However, taxonomy, and in particularalpha taxonomy, is more specifically the identification, description, and naming (i.e. nomenclature) of organisms,[6] while "classification" focuses on placing organisms within hierarchical groups that show their relationships to other organisms. All of these biological disciplines can deal with bothextinct andextant organisms.

Systematics uses taxonomy as a primary tool in understanding, as nothing about an organism's relationships with other living things can be understood without it first being properly studied and described in sufficient detail to identify and classify it correctly.[citation needed] Scientific classifications are aids in recording and reporting information to other scientists and to laymen. Thesystematist, a scientist who specializes in systematics, must, therefore, be able to use existing classification systems, or at least know them well enough to skilfully justify not using them.

Phenetics was an attempt to determine the relationships of organisms through a measure of overall similarity, making no distinction betweenplesiomorphies (shared ancestral traits) andapomorphies (derived traits). From the late-20th century onwards, it was superseded bycladistics, which rejects plesiomorphies in attempting to resolve thephylogeny of Earth's various organisms through time. Today's[update] systematists generally make extensive use ofmolecular biology and ofcomputer programs to study organisms.[citation needed]

Taxonomic characters

[edit]

Taxonomic characters are the taxonomic attributes that can be used to provide the evidence from which relationships (thephylogeny) between taxa are inferred.[7] Kinds of taxonomic characters include:[8]

  • Morphological characters
    • General external morphology
    • Special structures (e.g. genitalia)
    • Internal morphology (anatomy)
    • Embryology
    • Karyology and other cytological factors
  • Physiological characters
    • Metabolic factors
    • Body secretions
    • Genic sterility factors
  • Molecular characters
    • Immunological distance
    • Electrophoretic differences
    • Amino acid sequences of proteins
    • DNA hybridization
    • DNA and RNA sequences
    • Restriction endonuclease analyses
    • Other molecular differences
  • Behavioral characters
    • Courtship and other ethological isolating mechanisms
    • Other behavior patterns
  • Ecological characters
    • Habit and habitats
    • Food
    • Seasonal variations
    • Parasites and hosts
  • Geographic characters
    • General biogeographic distribution patterns
    • Sympatric-allopatric relationship of populations

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^ab"Systematics: Meaning, Branches and Its Application".Biology Discussion. 2016-05-27. Retrieved2017-04-12.
  2. ^Wilkins, J. S.What is systematics and what is taxonomy?Archived 2016-08-27 at theWayback Machine. Available onhttp://evolvingthoughts.net
  3. ^Michener, Charles D., John O. Corliss, Richard S. Cowan, Peter H. Raven, Curtis W. Sabrosky, Donald S. Squires, and G. W. Wharton (1970).Systematics In Support of Biological Research. Division of Biology and Agriculture, National Research Council. Washington, D.C. 25 pp.
  4. ^Singh, Gurcharan (2004).Plant systematics: An integrated approach. Science Publishers. p. 20.ISBN 9781578083510 – via Google Books.
  5. ^Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sunderland, Mass. : Sinauer Associates, p. 27
  6. ^Fortey, Richard (2008),Dry Store Room No. 1: The Secret Life of the Natural History Museum, London: Harper Perennial,ISBN 978-0-00-720989-7
  7. ^Mayr, Ernst and Peter D. Ashlock (1991). Principles of Systematic Zoology, (2nd edn.) New York: McGraw-Hill, p. 159.
  8. ^Mayr, Ernst and Peter D. Ashlock (1991), p. 162.

Further reading

[edit]
  • Brower, Andrew V. Z. and Randall T. Schuh. 2021.Biological Systematics: Principles and Applications, 3rd edn.ISBN 978-1-5017-5277-3
  • Simpson, Michael G. 2005.Plant Systematics.ISBN 978-0-12-644460-5
  • Wiley, Edward O. and Bruce S. Lieberman. 2011. "Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd edn."ISBN 978-0-470-90596-8

External links

[edit]
Evolution
Population
genetics
Development
Oftaxa
Oforgans
Ofprocesses
Tempo and modes
Speciation
History
Philosophy
Related
See also
Biology
Overview
Chemical basis
Cells
Genetics
Evolution
Diversity
Plant form
and function
Animal form
and function
Ecology
Research
methods
Laboratory
techniques
Field techniques
Branches
Glossaries
National
Other

.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Systematics&oldid=1289808537"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp