Durbin's early work included developing the primary instrument software for one of the firstX-ray crystallography area detectors[30] and theMRCBiorad confocal microscope, alongside contributions to neural modelling.[31][32]
He then led the informatics for theCaenorhabditis elegans genome project,[33] and alongside Jean Thierry-Mieg developed the genome databaseAceDB, which evolved into theWormBase web resource. Following this he played an important role in data collection for and interpretation of the human genome sequence.[34]
He has developed numerous methods for computationalsequence analysis.[35][36] These include gene finding (e.g. GeneWise) withEwan Birney[37] andHidden Markov models for protein and nucleic acid alignment and matching (e.g.HMMER) withSean Eddy and Graeme Mitchison. A standard textbookBiological Sequence analysis coauthored withSean Eddy,Anders Krogh and Graeme Mitchison[16] describes some of this work. Using these methods Durbin worked with colleagues to build a series of important genomic data resources, including the protein family databasePfam,[38] the genome databaseEnsembl,[39] and the gene family databaseTreeFam.[9]
More recently Durbin has returned to sequencing and has developed low coverage approaches to population genome sequencing, applied first to yeast,[40][41] and has been one of the leaders in the application of new sequencing technology to study human genome variation.[42][43] Durbin currently co-leads the international1000 Genomes Project to characterise variation down to 1% allele frequency as a foundation for human genetics.
Durbin's certificate of election for the Royal Society reads:
Durbin is distinguished for his powerful contribution to computational biology. In particular, he played a leading role in establishing the new field of bioinformatics. This allows the handling of biological data on an unprecedented scale, enabling genomics to prosper. He led the analysis of theC. elegans genome, and with Thierry-Mieg developed the database softwareAceDB. In the international genome project he led the analysis of protein coding genes. He introduced key computational tools in software and data handling. HisPfam database allowed theidentification of domains in new protein sequences; it used hidden Markov models to which approach generally he brought rigour and which led tocovariance models forRNA sequence.[45]
^Eddy, S. R.; Mitchison, G; Durbin, R (1995). "Maximum discrimination hidden Markov models of sequence consensus".Journal of Computational Biology.2 (1):9–23.doi:10.1089/cmb.1995.2.9.PMID7497123.
^Durbin, R. M.; Burns, R.; Moulai, J.; Metcalf, P.; Freymann, D.; Blum, M.; Anderson, J. E.; Harrison, S. C.; Wiley, D. C. (1986). "Protein, DNA, and virus crystallography with a focused imaging proportional counter".Science.232 (4754):1127–1132.Bibcode:1986Sci...232.1127D.doi:10.1126/science.3704639.PMID3704639.
^Liti, G.; Carter, D. M.; Moses, A. M.; Warringer, J.; Parts, L.; James, S. A.; Davey, R. P.; Roberts, I. N.; Burt, A.; Koufopanou, V.; Tsai, I. J.; Bergman, C. M.; Bensasson, D.; O'Kelly, M. J. T.; Van Oudenaarden, A.; Barton, D. B. H.; Bailes, E.; Nguyen, A. N.; Jones, M.; Quail, M. A.; Goodhead, I.; Sims, S.; Smith, F.; Blomberg, A.; Durbin, R.; Louis, E. J. (2009)."Population genomics of domestic and wild yeasts".Nature.458 (7236):337–341.Bibcode:2009Natur.458..337L.doi:10.1038/nature07743.PMC2659681.PMID19212322.
^Bentley, D. R.; Balasubramanian, S.; Swerdlow, H. P.; Smith, G. P.; Milton, J.; Brown, C. G.; Hall, K. P.; Evers, D. J.; Barnes, C. L.; Bignell, H. R.; Boutell, J. M.; Bryant, J.; Carter, R. J.; Keira Cheetham, R.; Cox, A. J.; Ellis, D. J.; Flatbush, M. R.; Gormley, N. A.; Humphray, S. J.; Irving, L. J.; Karbelashvili, M. S.; Kirk, S. M.; Li, H.; Liu, X.; Maisinger, K. S.; Murray, L. J.; Obradovic, B.; Ost, T.; Parkinson, M. L.; et al. (2008)."Accurate whole human genome sequencing using reversible terminator chemistry".Nature.456 (7218):53–59.Bibcode:2008Natur.456...53B.doi:10.1038/nature07517.PMC2581791.PMID18987734.