Inmathematics ,Grunsky's theorem , due to the German mathematicianHelmut Grunsky , is a result incomplex analysis concerningholomorphic univalent functions defined on theunit disk in thecomplex numbers . The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk|z| <r onto astarlike domain forr ≤ tanh π/4. The largestr for which this is true is called theradius of starlikeness of the function.
Letf be a univalent holomorphic function on the unit discD such thatf (0) = 0. Then for allr ≤ tanh π/4, the image of the disc|z| <r isstarlike with respect to 0, , i.e. it is invariant under multiplication by real numbers in (0,1).
An inequality of Grunsky [ edit ] Iff (z) is univalent onD withf (0) = 0, then
| log z f ′ ( z ) f ( z ) | ≤ log 1 + | z | 1 − | z | . {\displaystyle \left|\log {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.} Taking the real and imaginary parts of the logarithm, this implies the two inequalities
| z f ′ ( z ) f ( z ) | ≤ 1 + | z | 1 − | z | {\displaystyle \left|{zf^{\prime }(z) \over f(z)}\right|\leq {1+|z| \over 1-|z|}} and
| arg z f ′ ( z ) f ( z ) | ≤ log 1 + | z | 1 − | z | . {\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.} For fixedz , both these equalities are attained by suitableKoebe functions
g w ( ζ ) = ζ ( 1 − w ¯ ζ ) 2 , {\displaystyle g_{w}(\zeta )={\zeta \over (1-{\overline {w}}\zeta )^{2}},} where|w| = 1.
Grunsky (1932) originally proved these inequalities based on extremal techniques ofLudwig Bieberbach . Subsequent proofs, outlined inGoluzin (1939) , relied on theLoewner equation . More elementary proofs were subsequently given based onGoluzin's inequalities , an equivalent form of Grunsky's inequalities (1939) for theGrunsky matrix .
For a univalent functiong inz > 1 with an expansion
g ( z ) = z + b 1 z − 1 + b 2 z − 2 + ⋯ . {\displaystyle g(z)=z+b_{1}z^{-1}+b_{2}z^{-2}+\cdots .} Goluzin's inequalities state that
| ∑ i = 1 n ∑ j = 1 n λ i λ j log g ( z i ) − g ( z j ) z i − z j | ≤ ∑ i = 1 n ∑ j = 1 n λ i λ j ¯ log z i z j ¯ z i z j ¯ − 1 , {\displaystyle \left|\sum _{i=1}^{n}\sum _{j=1}^{n}\lambda _{i}\lambda _{j}\log {g(z_{i})-g(z_{j}) \over z_{i}-z_{j}}\right|\leq \sum _{i=1}^{n}\sum _{j=1}^{n}\lambda _{i}{\overline {\lambda _{j}}}\log {z_{i}{\overline {z_{j}}} \over z_{i}{\overline {z_{j}}}-1},} where thez i are distinct points with |z i | > 1 and λi are arbitrary complex numbers.
Takingn = 2. with λ1 = – λ2 = λ, the inequality implies
| log g ′ ( ζ ) g ′ ( η ) ( ζ − η ) 2 ( g ( ζ ) − g ( η ) ) 2 | ≤ log | 1 − ζ η ¯ | 2 ( | ζ | 2 − 1 ) ( | η | 2 − 1 ) . {\displaystyle \left|\log {g^{\prime }(\zeta )g^{\prime }(\eta )(\zeta -\eta )^{2} \over (g(\zeta )-g(\eta ))^{2}}\right|\leq \log {|1-\zeta {\overline {\eta }}|^{2} \over (|\zeta |^{2}-1)(|\eta |^{2}-1)}.} Ifg is an odd function and η = – ζ, this yields
| log ζ g ′ ( ζ ) g ( ζ ) | ≤ | ζ | 2 + 1 | ζ | 2 − 1 . {\displaystyle \left|\log {\zeta g^{\prime }(\zeta ) \over g(\zeta )}\right|\leq {|\zeta |^{2}+1 \over |\zeta |^{2}-1}.} Finally iff is any normalized univalent function inD , the required inequality forf follows by taking
g ( ζ ) = f ( ζ − 2 ) − 1 2 {\displaystyle g(\zeta )=f(\zeta ^{-2})^{-{1 \over 2}}} withz = ζ − 2 . {\displaystyle z=\zeta ^{-2}.}
Proof of the theorem [ edit ] Letf be a univalent function onD withf (0) = 0. ByNevanlinna's criterion ,f is starlike on|z| <r if and only if
ℜ z f ′ ( z ) f ( z ) ≥ 0 {\displaystyle \Re {zf^{\prime }(z) \over f(z)}\geq 0} for|z| <r . Equivalently
| arg z f ′ ( z ) f ( z ) | ≤ π 2 . {\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq {\pi \over 2}.} On the other hand by the inequality of Grunsky above,
| arg z f ′ ( z ) f ( z ) | ≤ log 1 + | z | 1 − | z | . {\displaystyle \left|\arg {zf^{\prime }(z) \over f(z)}\right|\leq \log {1+|z| \over 1-|z|}.} Thus if
log 1 + | z | 1 − | z | ≤ π 2 , {\displaystyle \log {1+|z| \over 1-|z|}\leq {\pi \over 2},} the inequality holds atz . This condition is equivalent to
| z | ≤ tanh π 4 {\displaystyle |z|\leq \tanh {\pi \over 4}} and hencef is starlike on any disk|z| <r withr ≤ tanh π/4.
Duren, P. L. (1983),Univalent functions , Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, pp. 95– 98,ISBN 0-387-90795-5 Goluzin, G.M. (1939),"Interior problems of the theory of univalent functions" ,Uspekhi Mat. Nauk ,6 :26– 89 (in Russian)Goluzin, G. M. (1969),Geometric theory of functions of a complex variable , Translations of Mathematical Monographs, vol. 26, American Mathematical Society Goodman, A.W. (1983),Univalent functions , vol. I, Mariner Publishing Co.,ISBN 0-936166-10-X Goodman, A.W. (1983),Univalent functions , vol. II, Mariner Publishing Co.,ISBN 0-936166-11-8 Grunsky, H. (1932),"Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche (inaugural dissertation)" ,SCHR. Math. Inst. U. Inst. Angew. Math. Univ. Berlin ,1 :95– 140, archived fromthe original on 2015-02-11, retrieved2011-12-07 (in German)Grunsky, H. (1934),"Zwei Bemerkungen zur konformen Abbildung" ,Jber. Deutsch. Math.-Verein. ,43 :140– 143 (in German)Hayman, W. K. (1994),Multivalent functions , Cambridge Tracts in Mathematics, vol. 110 (2nd ed.), Cambridge University Press,ISBN 0-521-46026-3 Nevanlinna, R. (1921), "Über die konforme Abbildung von Sterngebieten",Öfvers. Finska Vet. Soc. Forh. ,53 :1– 21 Pommerenke, C. (1975),Univalent functions, with a chapter on quadratic differentials by Gerd Jensen , Studia Mathematica/Mathematische Lehrbücher, vol. 15, Vandenhoeck & Ruprecht