Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quotient rule

From Wikipedia, the free encyclopedia
Formula for the derivative of a ratio of functions
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Incalculus, thequotient rule is a method of finding thederivative of afunction that is the ratio of two differentiable functions. Leth(x)=f(x)g(x){\displaystyle h(x)={\frac {f(x)}{g(x)}}}, where bothf andg are differentiable andg(x)0.{\displaystyle g(x)\neq 0.} The quotient rule states that the derivative ofh(x) is

h(x)=f(x)g(x)f(x)g(x)(g(x))2.{\displaystyle h'(x)={\frac {f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}}.}

It is provable in many ways by using otherderivative rules.

Examples

[edit]

Example 1: Basic example

[edit]

Givenh(x)=exx2{\displaystyle h(x)={\frac {e^{x}}{x^{2}}}}, letf(x)=ex,g(x)=x2{\displaystyle f(x)=e^{x},g(x)=x^{2}}, then using the quotient rule:ddx(exx2)=(ddxex)(x2)(ex)(ddxx2)(x2)2=(ex)(x2)(ex)(2x)x4=x2ex2xexx4=xex2exx3=ex(x2)x3.{\displaystyle {\begin{aligned}{\frac {d}{dx}}\left({\frac {e^{x}}{x^{2}}}\right)&={\frac {\left({\frac {d}{dx}}e^{x}\right)(x^{2})-(e^{x})\left({\frac {d}{dx}}x^{2}\right)}{(x^{2})^{2}}}\\&={\frac {(e^{x})(x^{2})-(e^{x})(2x)}{x^{4}}}\\&={\frac {x^{2}e^{x}-2xe^{x}}{x^{4}}}\\&={\frac {xe^{x}-2e^{x}}{x^{3}}}\\&={\frac {e^{x}(x-2)}{x^{3}}}.\end{aligned}}}

Example 2: Derivative of tangent function

[edit]

The quotient rule can be used to find the derivative oftanx=sinxcosx{\displaystyle \tan x={\frac {\sin x}{\cos x}}} as follows:ddxtanx=ddx(sinxcosx)=(ddxsinx)(cosx)(sinx)(ddxcosx)cos2x=(cosx)(cosx)(sinx)(sinx)cos2x=cos2x+sin2xcos2x=1cos2x=sec2x.{\displaystyle {\begin{aligned}{\frac {d}{dx}}\tan x&={\frac {d}{dx}}\left({\frac {\sin x}{\cos x}}\right)\\&={\frac {\left({\frac {d}{dx}}\sin x\right)(\cos x)-(\sin x)\left({\frac {d}{dx}}\cos x\right)}{\cos ^{2}x}}\\&={\frac {(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x.\end{aligned}}}

Reciprocal rule

[edit]
Main article:Reciprocal rule

The reciprocal rule is a special case of the quotient rule in which the numeratorf(x)=1{\displaystyle f(x)=1}. Applying the quotient rule givesh(x)=ddx[1g(x)]=0g(x)1g(x)g(x)2=g(x)g(x)2.{\displaystyle h'(x)={\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]={\frac {0\cdot g(x)-1\cdot g'(x)}{g(x)^{2}}}={\frac {-g'(x)}{g(x)^{2}}}.}

Utilizing thechain rule yields the same result.

Proofs

[edit]

Proof from derivative definition and limit properties

[edit]

Leth(x)=f(x)g(x).{\displaystyle h(x)={\frac {f(x)}{g(x)}}.} Applying the definition of the derivative and properties of limits gives the following proof, with the termf(x)g(x){\displaystyle f(x)g(x)} added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:h(x)=limk0h(x+k)h(x)k=limk0f(x+k)g(x+k)f(x)g(x)k=limk0f(x+k)g(x)f(x)g(x+k)kg(x)g(x+k)=limk0f(x+k)g(x)f(x)g(x+k)klimk01g(x)g(x+k)=limk0[f(x+k)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+k)k]1[g(x)]2=[limk0f(x+k)g(x)f(x)g(x)klimk0f(x)g(x+k)f(x)g(x)k]1[g(x)]2=[limk0f(x+k)f(x)kg(x)f(x)limk0g(x+k)g(x)k]1[g(x)]2=f(x)g(x)f(x)g(x)[g(x)]2.{\displaystyle {\begin{aligned}h'(x)&=\lim _{k\to 0}{\frac {h(x+k)-h(x)}{k}}\\&=\lim _{k\to 0}{\frac {{\frac {f(x+k)}{g(x+k)}}-{\frac {f(x)}{g(x)}}}{k}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k\cdot g(x)g(x+k)}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k}}\cdot \lim _{k\to 0}{\frac {1}{g(x)g(x+k)}}\\&=\lim _{k\to 0}\left[{\frac {f(x+k)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+k)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x)}{k}}-\lim _{k\to 0}{\frac {f(x)g(x+k)-f(x)g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)-f(x)}{k}}\cdot g(x)-f(x)\cdot \lim _{k\to 0}{\frac {g(x+k)-g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}}The limit evaluationlimk01g(x+k)g(x)=1[g(x)]2{\displaystyle \lim _{k\to 0}{\frac {1}{g(x+k)g(x)}}={\frac {1}{[g(x)]^{2}}}} is justified by the differentiability ofg(x){\displaystyle g(x)}, implying continuity, which can be expressed aslimk0g(x+k)=g(x){\displaystyle \lim _{k\to 0}g(x+k)=g(x)}.

Proof using implicit differentiation

[edit]

Leth(x)=f(x)g(x),{\displaystyle h(x)={\frac {f(x)}{g(x)}},} so thatf(x)=g(x)h(x).{\displaystyle f(x)=g(x)h(x).}

Theproduct rule then givesf(x)=g(x)h(x)+g(x)h(x).{\displaystyle f'(x)=g'(x)h(x)+g(x)h'(x).}

Solving forh(x){\displaystyle h'(x)} and substituting back forh(x){\displaystyle h(x)} gives:h(x)=f(x)g(x)h(x)g(x)=f(x)g(x)f(x)g(x)g(x)=f(x)g(x)f(x)g(x)[g(x)]2.{\displaystyle {\begin{aligned}h'(x)&={\frac {f'(x)-g'(x)h(x)}{g(x)}}\\&={\frac {f'(x)-g'(x)\cdot {\frac {f(x)}{g(x)}}}{g(x)}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}}

Proof using the reciprocal rule or chain rule

[edit]

Leth(x)=f(x)g(x)=f(x)1g(x).{\displaystyle h(x)={\frac {f(x)}{g(x)}}=f(x)\cdot {\frac {1}{g(x)}}.}

Then the product rule givesh(x)=f(x)1g(x)+f(x)ddx[1g(x)].{\displaystyle h'(x)=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right].}

To evaluate the derivative in the second term, apply thereciprocal rule, or thepower rule along with thechain rule:ddx[1g(x)]=1g(x)2g(x)=g(x)g(x)2.{\displaystyle {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]=-{\frac {1}{g(x)^{2}}}\cdot g'(x)={\frac {-g'(x)}{g(x)^{2}}}.}

Substituting the result into the expression givesh(x)=f(x)1g(x)+f(x)[g(x)g(x)2]=f(x)g(x)f(x)g(x)g(x)2=g(x)g(x)f(x)g(x)f(x)g(x)g(x)2=f(x)g(x)f(x)g(x)g(x)2.{\displaystyle {\begin{aligned}h'(x)&=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot \left[{\frac {-g'(x)}{g(x)^{2}}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {g(x)}{g(x)}}\cdot {\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}

Proof by logarithmic differentiation

[edit]

Leth(x)=f(x)g(x).{\displaystyle h(x)={\frac {f(x)}{g(x)}}.} Taking theabsolute value andnatural logarithm of both sides of the equation givesln|h(x)|=ln|f(x)g(x)|{\displaystyle \ln |h(x)|=\ln \left|{\frac {f(x)}{g(x)}}\right|}

Applying properties of the absolute value and logarithms,ln|h(x)|=ln|f(x)|ln|g(x)|{\displaystyle \ln |h(x)|=\ln |f(x)|-\ln |g(x)|}

Taking thelogarithmic derivative of both sides,h(x)h(x)=f(x)f(x)g(x)g(x){\displaystyle {\frac {h'(x)}{h(x)}}={\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}}

Solving forh(x){\displaystyle h'(x)} and substituting backf(x)g(x){\displaystyle {\tfrac {f(x)}{g(x)}}} forh(x){\displaystyle h(x)} gives:h(x)=h(x)[f(x)f(x)g(x)g(x)]=f(x)g(x)[f(x)f(x)g(x)g(x)]=f(x)g(x)f(x)g(x)g(x)2=f(x)g(x)f(x)g(x)g(x)2.{\displaystyle {\begin{aligned}h'(x)&=h(x)\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f(x)}{g(x)}}\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}

Taking the absolute value of the functions is necessary for thelogarithmic differentiation of functions that may have negative values, as logarithms are onlyreal-valued for positive arguments. This works becauseddx(ln|u|)=uu{\displaystyle {\tfrac {d}{dx}}(\ln |u|)={\tfrac {u'}{u}}}, which justifies taking the absolute value of the functions for logarithmic differentiation.

Higher order derivatives

[edit]

Implicit differentiation can be used to compute thenth derivative of a quotient (partially in terms of its firstn − 1 derivatives). For example, differentiatingf=gh{\displaystyle f=gh} twice (resulting inf=gh+2gh+gh{\displaystyle f''=g''h+2g'h'+gh''}) and then solving forh{\displaystyle h''} yieldsh=(fg)=fgh2ghg.{\displaystyle h''=\left({\frac {f}{g}}\right)''={\frac {f''-g''h-2g'h'}{g}}.}

See also

[edit]

References

[edit]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quotient_rule&oldid=1274075284"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp