Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pseudoanalytic function

From Wikipedia, the free encyclopedia
Generalization of analytic functions

In mathematics,pseudoanalytic functions are functions introduced byLipman Bers (1950,1951,1953,1956) that generalizeanalytic functions and satisfy a weakened form of theCauchy–Riemann equations.

Definitions

[edit]

Letz=x+iy{\displaystyle z=x+iy} and letσ(x,y)=σ(z){\displaystyle \sigma (x,y)=\sigma (z)} be a real-valued function defined in a bounded domainD{\displaystyle D}. Ifσ>0{\displaystyle \sigma >0} andσx{\displaystyle \sigma _{x}} andσy{\displaystyle \sigma _{y}} areHölder continuous, thenσ{\displaystyle \sigma } is admissible inD{\displaystyle D}. Further, given aRiemann surfaceF{\displaystyle F}, ifσ{\displaystyle \sigma } is admissible for some neighborhood at each point ofF{\displaystyle F},σ{\displaystyle \sigma } is admissible onF{\displaystyle F}.

The complex-valued functionf(z)=u(x,y)+iv(x,y){\displaystyle f(z)=u(x,y)+iv(x,y)} is pseudoanalytic with respect to an admissibleσ{\displaystyle \sigma } at the pointz0{\displaystyle z_{0}} if all partial derivatives ofu{\displaystyle u} andv{\displaystyle v} exist and satisfy the following conditions:

ux=σ(x,y)vy,uy=σ(x,y)vx{\displaystyle u_{x}=\sigma (x,y)v_{y},\quad u_{y}=-\sigma (x,y)v_{x}}

Iff{\displaystyle f} is pseudoanalytic at every point in some domain, then it is pseudoanalytic in that domain.[1]

Similarities to analytic functions

[edit]

Examples

[edit]
  • Complex constants are pseudoanalytic.
  • Anylinear combination with real coefficients of pseudoanalytic functions is pseudoanalytic.[1]

See also

[edit]

References

[edit]
  1. ^abBers, Lipman (1950),"Partial differential equations and generalized analytic functions"(PDF),Proceedings of the National Academy of Sciences of the United States of America,36 (2):130–136,Bibcode:1950PNAS...36..130B,doi:10.1073/pnas.36.2.130,ISSN 0027-8424,JSTOR 88348,MR 0036852,PMC 1063147,PMID 16588958
  2. ^Bers, Lipman (1956),"An outline of the theory of pseudoanalytic functions"(PDF),Bulletin of the American Mathematical Society,62 (4):291–331,doi:10.1090/s0002-9904-1956-10037-2,ISSN 0002-9904,MR 0081936

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudoanalytic_function&oldid=1160625117"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp