Generalization of analytic functions
In mathematics,pseudoanalytic functions are functions introduced byLipman Bers (1950 ,1951 ,1953 ,1956 ) that generalizeanalytic functions and satisfy a weakened form of theCauchy–Riemann equations .
Letz = x + i y {\displaystyle z=x+iy} and letσ ( x , y ) = σ ( z ) {\displaystyle \sigma (x,y)=\sigma (z)} be a real-valued function defined in a bounded domainD {\displaystyle D} . Ifσ > 0 {\displaystyle \sigma >0} andσ x {\displaystyle \sigma _{x}} andσ y {\displaystyle \sigma _{y}} areHölder continuous , thenσ {\displaystyle \sigma } is admissible inD {\displaystyle D} . Further, given aRiemann surface F {\displaystyle F} , ifσ {\displaystyle \sigma } is admissible for some neighborhood at each point ofF {\displaystyle F} ,σ {\displaystyle \sigma } is admissible onF {\displaystyle F} .
The complex-valued functionf ( z ) = u ( x , y ) + i v ( x , y ) {\displaystyle f(z)=u(x,y)+iv(x,y)} is pseudoanalytic with respect to an admissibleσ {\displaystyle \sigma } at the pointz 0 {\displaystyle z_{0}} if all partial derivatives ofu {\displaystyle u} andv {\displaystyle v} exist and satisfy the following conditions:
u x = σ ( x , y ) v y , u y = − σ ( x , y ) v x {\displaystyle u_{x}=\sigma (x,y)v_{y},\quad u_{y}=-\sigma (x,y)v_{x}} Iff {\displaystyle f} is pseudoanalytic at every point in some domain, then it is pseudoanalytic in that domain.[ 1]
Similarities to analytic functions [ edit ] Complex constants are pseudoanalytic. Anylinear combination with real coefficients of pseudoanalytic functions is pseudoanalytic.[ 1] ^a b Bers, Lipman (1950),"Partial differential equations and generalized analytic functions" (PDF) ,Proceedings of the National Academy of Sciences of the United States of America ,36 (2):130– 136,Bibcode :1950PNAS...36..130B ,doi :10.1073/pnas.36.2.130 ,ISSN 0027-8424 ,JSTOR 88348 ,MR 0036852 ,PMC 1063147 ,PMID 16588958 ^ Bers, Lipman (1956),"An outline of the theory of pseudoanalytic functions" (PDF) ,Bulletin of the American Mathematical Society ,62 (4):291– 331,doi :10.1090/s0002-9904-1956-10037-2 ,ISSN 0002-9904 ,MR 0081936 Kravchenko, Vladislav V. (2009).Applied pseudoanalytic function theory . Birkhauser.ISBN 978-3-0346-0004-0 . Bers, Lipman (1951),"Partial differential equations and generalized analytic functions. Second Note" (PDF) ,Proceedings of the National Academy of Sciences of the United States of America ,37 (1):42– 47,Bibcode :1951PNAS...37...42B ,doi :10.1073/pnas.37.1.42 ,ISSN 0027-8424 ,JSTOR 88213 ,MR 0044006 ,PMC 1063297 ,PMID 16588987 Bers, Lipman (1953),Theory of pseudo-analytic functions , Institute for Mathematics and Mechanics, New York University, New York,MR 0057347