Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pseudo-panspermia

From Wikipedia, the free encyclopedia
Supported hypothesis for the origin of life
This article is about the mainstream hypothesis that the organic building-blocks of life originated in space. For the fringe theory that life permeates the universe and gave rise to life on Earth, seePanspermia.

Pseudo-panspermia (sometimes calledsoft panspermia,molecular panspermia orquasi-panspermia) is a well-supported hypothesis for a stage in theorigin of life. The theory first asserts that many of the smallorganic molecules used for life originated inspace (for example, being incorporated in thesolar nebula, from which theplanets condensed). It continues that these organic molecules were distributed to planetary surfaces, where life then emerged onEarth andperhaps on other planets. Pseudo-panspermia differs from thefringe theory ofpanspermia, which asserts that life arrived on Earth from distant planets.[1]

Background

[edit]
Further information:Panspermia
Some stages in theorigin of life are well-understood, such as thehabitable Earth and the abiotic synthesis of simple molecules, whether in space or on Earth. Later stages remain more speculative.[2]

Theories of the origin of life have been recorded since the 5th century BC, when the Greek philosopherAnaxagoras proposed an initial version of panspermia: life arrived on earth from the heavens.[3] In modern times, full panspermia has little support amongstmainstream scientists.[1] Pseudo-panspermia, in which molecules are formed and transported through space is, however, well-supported.[2]

Extraterrestrial creation of organic molecules

[edit]

Interstellar molecules are formed by chemical reactions within very sparse interstellar or circumstellar clouds of dust and gas. Usually this occurs when a molecule becomesionised, often as the result of an interaction withcosmic rays. This positively charged molecule then draws in a nearby reactant by electrostatic attraction of the neutral molecule's electrons. Molecules can also be generated by reactions between neutral atoms and molecules, although this process is generally slower.[4] The dust plays a critical role of shielding the molecules from the ionizing effect of ultraviolet radiation emitted by stars.[5] TheMurchison meteorite contains the organic moleculesuracil andxanthine,[6][7] which must therefore already have been present in the early Solar System, where they could have played a role in the origin of life.[8]

Nitriles, key molecular precursors of theRNA World scenario, are among the most abundant chemical families in the universe and have been found in molecular clouds in the center of the Milky Way, protostars of different masses, meteorites and comets, and also in the atmosphere of Titan, the largest moon of Saturn.[9][10]

Evidence for the extraterrestrial creation of organic molecules includes both their discovery in various contexts in space, and their laboratory synthesis under extraterrestrial conditions:

Extraterrestrial organic molecules found in space
MoleculeClassBodyNotes
GlycineAmino acidCometNASA, 2009[11]
mixedaromatic-aliphatic compoundsCosmic dust2011[12][13]
GlycolaldehydeSugar-relatedAround aprotostarCopenhagen University, 2012[14][15] Precursor ofRNA[16]
Cyanomethanimine,EthanimineIminesIcy particles ininterstellar spacePrecursors of nucleobaseadenine, and of amino acidalanine[17]
polycyclic aromatic hydrocarbons (PAHs)widespread, 20% of carbon in universeNASA, 2014[18]
Glycine,
Methylamine,
Ethylamine
Amino acid,aminesComa ofcomet67P/Churyumov-GerasimenkoRosetta Mission, 2016[19]
Uracil,NiacinNucleobase,vitamer162173 RyuguHayabusa2, 2023[20][21]
Laboratory syntheses under extraterrestrial conditions
MoleculeClassConditionsNotes
Precursors of amino acids and nucleotidesInterstellar mediumNASA, 2012, starting frompolycyclic aromatic hydrocarbons (PAHs)[22][23]
Uracil,
Cytosine,
Thymine
NucleobasesPyrimidine, outer spaceNASA, 2015[24]
OligoglycinesPeptidesLow-temperature areas of outer spaceInitial materials are CO, C, and NH3, common in molecular clouds of the interstellar medium[25][26]

Planetary distribution of organic molecules

[edit]

Organic molecules can then be distributed to planets including Earth both when the planets formed and later. If the materials from which planets formed contained organic molecules, and were not destroyed by heat or other processes, then these would be available for abiogenesis on those planets.

Later distribution is by means of bodies such ascomets andasteroids. These may fall to the planetary surface asmeteorites, releasing any molecules they are carrying as they vaporise on impact or later as they erode.

Studies of rock and dust from asteroidBennu delivered to Earth by NASA’sOSIRIS-REx have revealed molecules that, on Earth, are key to life, as well as a history of saltwater.[27]

Findings of organic molecules in meteorites include:

Organic molecules found in meteorites
MoleculeClassNotes
Adenine,
Guanine
NucleobaseNASA, 2011[28][29]
SugarsIn "primitive meteorites"[30]
Guanine,
Adenine,
Cytosine,
Uracil,
Thymine
Nucleobases2022[31]


Large asteroids with ice and organic chemicals
AsteroidLocationNotes
24 ThemisAsteroid BeltNASA,Jet Propulsion Laboratory,
Near Earth Objects, life on Earth[32]
269 JustitiaAsteroid BeltNASA,JPL Small-Body Database[33]

References

[edit]
  1. ^abMay, Andrew (2019).Astrobiology: The Search for Life Elsewhere in the Universe. London: Icon Books.ISBN 978-1-78578-342-5.OCLC 999440041.Although they were part of the scientific establishment – Hoyle at Cambridge and Wickramasinghe at the University of Wales – their views on the topic were far from mainstream, and panspermia remains a fringe theory
  2. ^abWalker, Sara I.; Packard, N.; Cody, G. D. (13 November 2017)."Re-conceptualizing the origins of life".Philosophical Transactions of the Royal Society A.375 (2109): 20160337.Bibcode:2017RSPTA.37560337W.doi:10.1098/rsta.2016.0337.PMC 5686397.PMID 29133439.
  3. ^Hollinger, Maik (2016). "Life from Elsewhere – Early History of the Maverick Theory of Panspermia".Sudhoffs Archiv.100 (2):188–205.doi:10.25162/sudhoff-2016-0009.JSTOR 24913787.PMID 29668166.
  4. ^Dalgarno, A. (2006)."The galactic cosmic ray ionization rate".Proceedings of the National Academy of Sciences.103 (33):12269–73.Bibcode:2006PNAS..10312269D.doi:10.1073/pnas.0602117103.PMC 1567869.PMID 16894166.
  5. ^Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995). "The physics of the interstellar medium".Twentieth Century Physics (2nd ed.). CRC Press. p. 1765.ISBN 978-0-7503-0310-1.
  6. ^Martins, Zita; Botta, Oliver;Fogel, Marilyn L.; Sephton, Mark A.; Glavin, Daniel P.; Watson, Jonathan S.; Dworkin, Jason P.; Schwartz, Alan W.; Ehrenfreund, Pascale (2008). "Extraterrestrial nucleobases in the Murchison meteorite".Earth and Planetary Science Letters.270 (1–2):130–36.arXiv:0806.2286.Bibcode:2008E&PSL.270..130M.doi:10.1016/j.epsl.2008.03.026.S2CID 14309508.
  7. ^"We may all be space aliens: study".AFP. 20 August 2009. Archived fromthe original on June 17, 2008. Retrieved8 November 2014.
  8. ^Martins, Zita; Botta, Oliver;Fogel, Marilyn L.; et al. (2008). "Extraterrestrial nucleobases in the Murchison meteorite".Earth and Planetary Science Letters.270 (1–2):130–36.arXiv:0806.2286.Bibcode:2008E&PSL.270..130M.doi:10.1016/j.epsl.2008.03.026.S2CID 14309508.
  9. ^Rivilla, Víctor M.; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Colzi, Laura; Tercero, Belén; de Vicente, Pablo; Zeng, Shaoshan; Martín, Sergio; García de la Concepción, Juan; Bizzocchi, Luca; Melosso, Mattia (2022)."Molecular Precursors of the RNA-World in Space: New Nitriles in the G+0.693−0.027 Molecular Cloud".Frontiers in Astronomy and Space Sciences.9: 876870.arXiv:2206.01053.Bibcode:2022FrASS...9.6870R.doi:10.3389/fspas.2022.876870.ISSN 2296-987X.
  10. ^"Building blocks for RNA-based life abound at center of our galaxy".EurekAlert!. 2022-07-08. Retrieved2022-07-11.
  11. ^"'Life chemical' detected in comet".NASA. BBC News. 18 August 2009. Retrieved6 March 2010.
  12. ^Chow, Denise (26 October 2011)."Discovery: Cosmic Dust Contains Organic Matter from Stars".Space.com. Retrieved26 October 2011.
  13. ^Kwok, Sun; Zhang, Yong (2011). "Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features".Nature.479 (7371):80–83.Bibcode:2011Natur.479...80K.doi:10.1038/nature10542.PMID 22031328.S2CID 4419859.
  14. ^Than, Ker (August 29, 2012)."Sugar Found In Space".National Geographic. Archived fromthe original on September 1, 2012. RetrievedAugust 31, 2012.
  15. ^"Sweet! Astronomers spot sugar molecule near star".AP News. August 29, 2012. RetrievedAugust 31, 2012.
  16. ^Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; Bourke, Tyler L.; et al. (2012). "Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-Type Protostar with Alma".The Astrophysical Journal.757 (1): L4.arXiv:1208.5498.Bibcode:2012ApJ...757L...4J.doi:10.1088/2041-8205/757/1/L4.S2CID 14205612.
  17. ^Loomis, Ryan A.; Zaleski, Daniel P.; Steber, Amanda L.; et al. (2013). "The Detection of Interstellar Ethanimine (CH3CHNH) from Observations Taken During the GBT PRIMOS Survey".The Astrophysical Journal.765 (1): L9.arXiv:1302.1121.Bibcode:2013ApJ...765L...9L.doi:10.1088/2041-8205/765/1/L9.S2CID 118522676.
  18. ^Hoover, Rachel (February 21, 2014)."Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That".NASA. Retrieved22 February 2014.
  19. ^"Prebiotic chemicals – amino acid and phosphorus – in the coma of comet 67P/Churyumov-Gerasimenko".
  20. ^Strickland, Ashley (2023-03-21)."RNA compound and vitamin B3 found in samples from near-Earth asteroid".CNN. Retrieved2023-03-24.
  21. ^Oba, Yasuhiro; Koga, Toshiki; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko; Sasaki, Kazunori; Sato, Hajime; Glavin, Daniel P.; Dworkin, Jason P.; Naraoka, Hiroshi; Tachibana, Shogo; Yurimoto, Hisayoshi; Nakamura, Tomoki; Noguchi, Takaaki; Okazaki, Ryuji (2023-03-21)."Uracil in the carbonaceous asteroid (162173) Ryugu".Nature Communications.14 (1): 1292.Bibcode:2023NatCo..14.1292O.doi:10.1038/s41467-023-36904-3.ISSN 2041-1723.PMC 10030641.PMID 36944653.
  22. ^"NASA Cooks Up Icy Organics to Mimic Life's Origins".Space.com. September 20, 2012. RetrievedSeptember 22, 2012.
  23. ^Gudipati, Murthy S.; Yang, Rui (2012). "In-Situ Probing of Radiation-Induced Processing of Organics in Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies".The Astrophysical Journal.756 (1): L24.Bibcode:2012ApJ...756L..24G.doi:10.1088/2041-8205/756/1/L24.S2CID 5541727.
  24. ^Marlaire, Ruth (3 March 2015)."NASA Ames Reproduces the Building Blocks of Life in Laboratory".NASA. Retrieved5 March 2015.
  25. ^Krasnokutski, S. A.; Chuang, K. J.; Jäger, C.; et al. (2022). "A pathway to peptides in space through the condensation of atomic carbon".Nature Astronomy.6 (3):381–386.arXiv:2202.12170.Bibcode:2022NatAs...6..381K.doi:10.1038/s41550-021-01577-9.S2CID 246768607.
  26. ^Krasnokutski, Serge A.; Jäger, Cornelia; Henning, Thomas; Geffroy, Claude; Remaury, Quentin B.; Poinot, Pauline (2024-04-19)."Formation of extraterrestrial peptides and their derivatives".Science Advances.10 (16): eadj7179.arXiv:2405.00744.Bibcode:2024SciA...10J7179K.doi:10.1126/sciadv.adj7179.ISSN 2375-2548.PMC 11023503.PMID 38630826.
  27. ^Taveau, Jessica."NASA's Asteroid Bennu Sample Reveals Mix of Life's Ingredients". Retrieved2025-02-04.
  28. ^Callahan, M. P.; Smith, K. E.; Cleaves, H. J.; et al. (2011)."Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases".Proceedings of the National Academy of Sciences.108 (34):13995–98.Bibcode:2011PNAS..10813995C.doi:10.1073/pnas.1106493108.PMC 3161613.PMID 21836052.
  29. ^Steigerwald, John (8 August 2011)."NASA Researchers: DNA Building Blocks Can Be Made in Space".NASA. Retrieved10 August 2011.
  30. ^Furukawa, Yoshihiro; Chikaraishi, Yoshito; Ohkouchi, Naohiko; et al. (13 November 2019)."Extraterrestrial ribose and other sugars in primitive meteorites".Proceedings of the National Academy of Sciences.116 (49):24440–45.Bibcode:2019PNAS..11624440F.doi:10.1073/pnas.1907169116.PMC 6900709.PMID 31740594.
  31. ^Oba, Yasuhiro; et al. (26 April 2022)."Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites".Nature Communications.13 (2008): 2008.Bibcode:2022NatCo..13.2008O.doi:10.1038/s41467-022-29612-x.PMC 9042847.PMID 35473908.
  32. ^"Life On Earth".NASA-JPL. JPL. Retrieved14 September 2022.
  33. ^"NASA Open Data Portal".NASA dot gov. NASA. Retrieved14 September 2022.
Disciplines
Main topics
Planetary
habitability
Space
missions
Earth orbit
Mars
Comets and
asteroids
Heliocentric
Planned
Proposed
Cancelled and
undeveloped
Institutions
and programs
History of research
Prebiotic synthesis
Protocells
Earliest organisms
Research
Molecules
Diatomic








Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudo-panspermia&oldid=1276516077"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp