Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Two-pore-domain potassium channel

From Wikipedia, the free encyclopedia
(Redirected fromPotassium leak channel)
Class of transport proteins
"TASK" redirects here. For other uses, seeTask.
Not to be confused with the small family oftwo-pore channels.

Thetwo-pore-domain ortandem pore domain potassium channels are a family of 15 members that form what is known asleak channels which possessGoldman-Hodgkin-Katz (open)rectification.[1] These channels are regulated by several mechanisms includingsignaling lipids,oxygen tension,pH,mechanical stretch, andG-proteins.[2] Two-pore-domain potassium channels correspond structurally to ainward-rectifier potassium channel α-subunits. Each inward-rectifier potassium channel α-subunit is composed of twotransmembrane α-helices, a pore helix and a potassium ion selectivity filter sequence and assembles into atetramer forming the complete channel.[3] The two-pore domain potassium channels instead aredimers where each subunit is essentially two α-subunits joined together.[4]

Each single channel doesnot have two pores; the name of the channel comes from the fact thateach subunit has two P (pore) domains in its primary sequence.[5] To quote Rang and Dale (2015), "The nomenclature is misleading, especially when they are incorrectly referred to as two-pore channels".[6]

A decrease in these leak channels activity is known as 'channel arrest', which reduces oxygen consumption[7] and allows animals to survive anoxia.[8]

Below is a list of the 15 known two-pore-domain humanpotassium channels:[1]

GeneChannel[9]FamilyAliases
KCNK1K2p1.1TWIK[2][10]TWIK-1
KCNK2K2p2.1TREK[2][10]TREK-1
KCNK3K2p3.1TASK[2][10]TASK-1
KCNK4K2p4.1TREK[2][10]TRAAK[11]
KCNK5K2p5.1TASK[2][10]TASK-2[12]
KCNK6K2p6.1TWIK[2][10]TWIK-2
KCNK7K2p7.1TWIK[2][10]
KCNK9K2p9.1TASK[2][10]TASK-3
KCNK10K2p10.1TREK[2][10]TREK-2
KCNK12K2p12.1THIKTHIK-2
KCNK13K2p13.1THIKTHIK-1
KCNK15K2p15.1TASK[2][10]TASK-5
KCNK16K2p16.1TALK[2][10]TALK-1
KCNK17K2p17.1TALK[2][10]TALK-2, TASK-4
KCNK18K2p18.1TRIK, TRESK[2][10][13][14]
K2P1
Human K2P1PDB:3UKM
Identifiers
SymbolK2P1
HGNC6272
RefSeqNP_002236.1
UniProtO00180
Search for
StructuresSwiss-model
DomainsInterPro
K2P2
Human K2P2PDB:4TWK
Identifiers
SymbolK2P2
HGNC6277
RefSeqNP_055032.1
UniProtO95069
Search for
StructuresSwiss-model
DomainsInterPro
K2P3
Human K2P3PDB:6RV3
Identifiers
SymbolK2P3
HGNC6278
RefSeqNP_002237.1
UniProtO14649
Search for
StructuresSwiss-model
DomainsInterPro

See also

[edit]

References

[edit]
  1. ^abGoldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (December 2005)."International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels".Pharmacological Reviews.57 (4):527–540.doi:10.1124/pr.57.4.12.PMID 16382106.S2CID 7356601.
  2. ^abcdefghijklmnEnyedi P, Czirják G (April 2010)."Molecular background of leak K+ currents: two-pore domain potassium channels".Physiological Reviews.90 (2):559–605.doi:10.1152/physrev.00029.2009.PMID 20393194.
  3. ^Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (April 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity".Science.280 (5360):69–77.Bibcode:1998Sci...280...69D.doi:10.1126/science.280.5360.69.PMID 9525859.
  4. ^Miller AN, Long SB (January 2012). "Crystal structure of the human two-pore domain potassium channel K2P1".Science.335 (6067):432–436.Bibcode:2012Sci...335..432M.doi:10.1126/science.1213274.PMID 22282804.S2CID 206537279.
  5. ^Baggetta AM, Bayliss DA, Czirják G, Enyedi P, Goldstein SA, Lesage F, Minor Jr DL, Plant LD, Sepúlveda F."Two P domain potassium channels".GtoPdb v.2023.1. IUPHAR/BPSGuide to Pharmacology. Retrieved2019-05-28.
  6. ^Rang HP (2003).Pharmacology (8 ed.). Edinburgh: Churchill Livingstone. p. 59.ISBN 978-0-443-07145-4.
  7. ^Lutz, Peter L.; Milton, Sarah L. (2004-08-15)."Negotiating brain anoxia survival in the turtle".Journal of Experimental Biology.207 (18):3141–3147.Bibcode:2004JExpB.207.3141L.doi:10.1242/jeb.01056.ISSN 1477-9145.PMID 15299035.
  8. ^Welker, Alexis F.; Moreira, Daniel C.; Campos, Élida G.; Hermes-Lima, Marcelo (August 2013)."Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability".Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.165 (4):384–404.doi:10.1016/j.cbpa.2013.04.003.PMID 23587877.
  9. ^Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, et al. (December 2003). "International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels".Pharmacological Reviews.55 (4):583–586.doi:10.1124/pr.55.4.9.PMID 14657415.S2CID 34963430.
  10. ^abcdefghijklmLotshaw DP (2007). "Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels".Cell Biochemistry and Biophysics.47 (2):209–256.doi:10.1007/s12013-007-0007-8.PMID 17652773.S2CID 12759521.
  11. ^Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (June 1998)."A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids".The EMBO Journal.17 (12):3297–3308.doi:10.1093/emboj/17.12.3297.PMC 1170668.PMID 9628867.
  12. ^Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (March 2001)."Potassium leak channels and the KCNK family of two-P-domain subunits".Nature Reviews. Neuroscience.2 (3):175–184.doi:10.1038/35058574.PMID 11256078.S2CID 9682396.
  13. ^Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, et al. (July 2003)."A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord".The Journal of Biological Chemistry.278 (30):27406–27412.doi:10.1074/jbc.M206810200.PMID 12754259.
  14. ^Czirják G, Tóth ZE, Enyedi P (April 2004)."The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin".The Journal of Biological Chemistry.279 (18):18550–18558.doi:10.1074/jbc.M312229200.PMID 14981085.

External links

[edit]
Ligand-gated
Voltage-gated
Constitutively active
Proton-gated
Voltage-gated
Calcium-activated
Inward-rectifier
Tandem pore domain
Voltage-gated
Miscellaneous
Cl:Chloride channel
H+:Proton channel
M+:CNG cation channel
M+:TRP cation channel
H2O (+solutes):Porin
Cytoplasm:Gap junction
By gating mechanism
Ion channel class
see alsodisorders
Calcium
VDCCsTooltip Voltage-dependent calcium channels
Blockers
Activators
Potassium
VGKCsTooltip Voltage-gated potassium channels
Blockers
Activators
IRKsTooltip Inwardly rectifying potassium channel
Blockers
Activators
KCaTooltip Calcium-activated potassium channel
Blockers
Activators
K2PsTooltip Tandem pore domain potassium channel
Blockers
Activators
Sodium
VGSCsTooltip Voltage-gated sodium channels
Blockers
Activators
ENaCTooltip Epithelial sodium channel
Blockers
Activators
ASICsTooltip Acid-sensing ion channel
Blockers
Chloride
CaCCsTooltip Calcium-activated chloride channel
Blockers
Activators
CFTRTooltip Cystic fibrosis transmembrane conductance regulator
Blockers
Activators
Unsorted
Blockers
Others
TRPsTooltip Transient receptor potential channels
LGICsTooltip Ligand gated ion channels
Stub icon

Thisprotein-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Two-pore-domain_potassium_channel&oldid=1284680860"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp