Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phytotoxin

From Wikipedia, the free encyclopedia
Class of toxins found in plants

Phytotoxins are substances that are poisonous ortoxic to the growth of plants. Phytotoxic substances may result from human activity, as withherbicides, or they may be produced by plants, by microorganisms, or by naturally occurring chemical reactions.

The term is also used to describe toxic chemicals produced by plants themselves, which function as defensive agents against their predators. Most examples pertaining to this definition of phytotoxin are members of various classes ofspecialised or secondary metabolites, includingalkaloids,terpenes, and especiallyphenolics, though not all such compounds are toxic or serve defensive purposes.[1] Phytotoxins may also be toxic to humans.[2][3]

Toxins produced by plants

[edit]

Alkaloids

[edit]

Alkaloids are derived fromamino acids, and containnitrogen.[4] They are medically important by interfering with components of thenervous system affectingmembrane transport,protein synthesis, andenzyme activities. They generally have a bitter taste. Alkaloids usually end in -ine (caffeine,nicotine,cocaine,morphine,ephedrine).

Terpenes

[edit]

Terpenes are made of water-insolublelipids, and synthesized fromacetyl-CoA or basic intermediates ofglycolysis[5] They often end in -ol (menthol) and comprise the majority of plant essential oils.

  • Monoterpenes are found ingymnosperms and collect in theresin ducts and may be released after an insect begins to feed to attract the insect's natural enemies.
  • Sesquiterpenes are bitter tasting to humans and are found onglandular hairs or subdermal pigments.
  • Diterpenes are contained in resin and block and deter insect feeding.Taxol, an important anticancer drug is found in this group.
  • Triterpenes mimic the insect molting hormoneecdysone, disrupting molting and development and is often lethal. They are usually found incitrus fruit, and produce a bitter substance calledlimonoid that deters insect feeding.
  • Glycosides are made of one or more sugars combined with a non-sugar likeaglycone, which usually determines the level oftoxicity.Cyanogenic glycosides are found in many plant seeds likecherries,apples, andplums. Cyanogenic glycosides producecyanide and are extremely poisonous.Cardenolides have a bitter taste and influence NA+/K+ activatedATPases in human heart, they may slow or strengthen the heart rate.Saponins have lipid- and water-soluble components with detergent properties. Saponins form complexes withsterols and interfere with their uptake.

Phenolics

[edit]

Phenolics are made of a hydroxyl group bonded to an aromatichydrocarbon.Furanocoumarin is aphototoxic phenolic, and is non-toxic until activated by light. Furanocoumarin blocks the transcription and repair ofDNA.Tannins are another group of phenolics important intanning leather.Lignins, also a group of phenolics, are the most common compounds on Earth, and help conduct water in plant stems and fill spaces in the cell.

Substances toxic to plants

[edit]
This sectionis missing information about made by plantsallelopathy. Please expand the section to include this information. Further details may exist on thetalk page.(April 2022)

Herbicides

[edit]

Herbicides usually interfere with plant growth and often imitate plant hormones.

  • ACCase Inhibitors kill grasses and inhibit the first step in lipid synthesis,acetyl-CoA carboxylase, thus affecting cell membrane production in themeristems. They do not affect dicots plants.[6]
  • ALS Inhibitors affect grasses and dicots by inhibiting the first step in some amino acid synthesis,acetolactate synthesis. The plants are slowly starved of these amino acids and eventually DNA synthesis stops.
  • ESPS Inhibitors affect grasses and dicots by inhibiting the first step in the synthesis oftryptophan,phenylalanine andtyrosine, enolpyruvylshikimate 3-phosphate synthase enzyme.
  • Photosystem II Inhibitors reduce theelectron flow from water to NADPH2+ causing electrons to accumulate onchlorophyll molecules and excessoxidation to occur. The plant will eventually die.
  • SyntheticAuxin mimics plant hormones and can affect the plant cell membrane.

Bacterial phytotoxins

[edit]
  • Tabtoxin is produced byPseudomonas syringae pv. tabaci that may cause toxic concentrations ofammonia to build up. This buildup of ammonia causes leafchlorosis.[7]
  • Glycopeptides are produced by a number of bacteria and have been indicated in disease development.[7] Aglycopeptide fromCorynebacterium sepedonicum causes rapid wilt and marginalnecrosis. A toxin fromCorynebacterium insidiosum causes plugging of the plant stem interfering with water movement between cells.[7] Amylovorin is apolysaccharide fromErwinia amylovora and causes wilting in rosaceous plants. A polysaccharide fromXanthomonas campestris obstructs water flow throughphloem causing black rot in cabbage.
  • Phaseolotoxin is a modified tripeptide [Nδ-(N′-sulfodiaminophosphinyl)-ornithyl-alanyl-homoarginine] produced by certains strains ofPseudomonas syringae pv.phaseolicola,Pseudomonas syringae pv.actinidiae and strainPseudomonas syringae pv.syringae CFBP 3388.[8][9][10] Phaseolotoxin is a reversible inhibitor of the enzyme ornithine carbamoyltransferase (OCTase; EC 2.1.3.3), which catalyzes the formation of citrulline from ornithine and carbamoylphosphate in the arginine biosynthetic pathway. Phaseolotoxin is an effective inhibitor of OCTase activity from plant, mammalian, and bacterial sources and causes a phenotypic requirement for arginine. Additionally, phaseolotoxin inhibits the enzyme ornithine decarboxylase (EC 4.1.1.17), which is involved in the biosynthesis ofpolyamines.[11]
  • Rhizobiotoxine, produced byRhizobium japonicum, causes the root nodules of some soy bean plants to become chlorotic.

See also

[edit]

References

[edit]
  1. ^Raven, Peter H, Ray F. Evert, Susan E. Eichhorn: "Biology of Plants", pages 27-33.
  2. ^Iwasaki, S (April 1998)."Natural organic compounds that affect to microtubule functions".Yakugaku Zasshi.118 (4):112–26.doi:10.1248/yakushi1947.118.4_111.PMID 9564789.
  3. ^Bjeldanes, Leonard; Shibamoto, Takayuki (2009).Introduction to Food Toxicology (2nd ed.). Burlington: Elsevier. p. 124.ISBN 9780080921532.
  4. ^Zeiger; Taiz, L. "Plant Defenses".Plant Physiology. pp. 349–376.
  5. ^Plant Sciences "Poisonous Plants". pages 170-175.[full citation needed]
  6. ^Pike, David R., Aaron Hager, "How Herbicides Work"http://wed.aces.uiuc.edu/vista/pdf_pubs/herbwork.pdf[permanent dead link]
  7. ^abcStrobel, Gary A. 1977. Annual Review Microbiology "Bacterial Phytotoxins. 31:205-224
  8. ^Bender CL, Alarcón-Chaidez F, Gross DC, 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews 63, 266-292
  9. ^Tourte C, Manceau C, 1995. A strain of Pseudomonas syringae which does not belong to pathovar phaseolicola produces phaseolotoxin. European Journal of Plant Pathology 101, 483-490
  10. ^Murillo J, Bardaji L, Navarro de la Fuente L, Führer ME, Aguilera S, Alvarez-Morales A, 2011. Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition. Research in Microbiology 162, 253-261
  11. ^Bachmann AS, Matile P, Slusarenko AJ, 1998. Inhibition of ornithine decarboxylase activity by phaseolotoxin: Implications for symptom production in halo blight of French bean. Physiological and Molecular Plant Pathology 53, 287-299.
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phytotoxin&oldid=1241721120"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp