Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

PFKM

From Wikipedia, the free encyclopedia
Mammalian protein found in Homo sapiens
PFKM
Available structures
PDBOrtholog search:PDBeRCSB
List of PDB id codes

4OMT

Identifiers
AliasesPFKM, ATP-PFK, GSD7, PFK-1, PFK1, PFKA, PFKX, PPP1R122, phosphofructokinase, muscle
External IDsOMIM:610681;MGI:97548;HomoloGene:20101;GeneCards:PFKM;OMA:PFKM - orthologs
Gene location (Mouse)
Chromosome 15 (mouse)
Chr.Chromosome 15 (mouse)[1]
Chromosome 15 (mouse)
Genomic location for PFKM
Genomic location for PFKM
Band15|15 F1Start97,990,470bp[1]
End98,030,332bp[1]
RNA expression pattern
Bgee
HumanMouse (ortholog)
    n/a
Top expressed in
  • triceps brachii muscle

  • temporal muscle

  • extensor digitorum longus muscle

  • ankle

  • sternocleidomastoid muscle

  • medial head of gastrocnemius muscle

  • tibialis anterior muscle

  • digastric muscle

  • vastus lateralis muscle

  • muscle of thigh
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5213

18642

Ensembl

ENSG00000152556

ENSMUSG00000033065

UniProt

P08237

P47857

RefSeq (mRNA)

NM_000289
NM_001166686
NM_001166687
NM_001166688

NM_001163487
NM_001163488
NM_021514
NM_001357688

RefSeq (protein)
NP_000280
NP_001160158
NP_001160159
NP_001160160
NP_001341664

NP_001341666
NP_001341667
NP_001341668
NP_001341669
NP_001341670
NP_001341671
NP_001341672
NP_001341673
NP_001341674
NP_001341675
NP_001341676
NP_001341677
NP_001341665
NP_001350548

NP_001156959
NP_001156960
NP_067489
NP_001344617

Location (UCSC)n/aChr 15: 97.99 – 98.03 Mb
PubMed search[2][3]
Wikidata
View/Edit HumanView/Edit Mouse

6-phosphofructokinase, muscle type is anenzyme that in humans is encoded by thePFKMgene on chromosome 12. Threephosphofructokinase isozymes exist in humans: muscle,liver andplatelet. These isozymes function assubunits of the mammaliantetramer phosphofructokinase, whichcatalyzes thephosphorylation offructose-6-phosphate tofructose-1,6-bisphosphate. Tetramer composition varies depending on tissue type. This gene encodes the muscle-type isozyme. Mutations in this gene have been associated withglycogen storage disease type VII, also known as Tarui disease.Alternatively spliced transcript variants have been described.[provided by RefSeq, Nov 2009][4]

Structure

[edit]

Gene

[edit]

This gene is found on chromosome 12.[4] The coding region inPFKM only shares a 68% similarity with that of the liver-typePFKL.[5]

Protein

[edit]

This 85-kDa protein is one of two subunit types that comprise the seven tetrameric PFK isozymes.[6][7] The muscle isozyme (PFK-1) is composed solely of PFKM.[6][8][9]The liver PFK (PFK-5) contains solely the second subunit type, PFKL, while the erythrocyte PFK includes five isozymes composed of different combinations of PFKM and PFKL.[6][7][9] These subunits evolved from a commonprokaryotic ancestor viagene duplication and mutation events. Generally, theN-terminal of the subunits carries out their catalytic activity while theC-terminal contains allostericligand binding sites.[10] In particular, the binding site for the PFK inhibitorcitrate is found in the PFKL C-terminal region.[11]

Function

[edit]

This gene encodes one of three protein subunits of PFK, which are expressed and combined to form the tetrameric PFK in a tissue-specific manner. As a PFK subunit, PFKL is involved in catalyzing the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. This irreversible reaction serves as the major rate-limiting step of glycolysis.[6][9][10][12]

Though the PFKM subunit majorly incorporates into muscle and erythrocyte PFKs, PFKM also is expressed in theheart,brain, andtestis.[13]

Clinical significance

[edit]

As the erythrocyte PFK is composed of both PFKL and PFKM, thisheterogeneic composition is attributed with the differential PFK activity and organ involvement observed in some inherited PFK deficiency states in whichmyopathy orhemolysis or both can occur, such as glycogenosis type VII, also known as Tarui disease.[6][9][14] Notably, mutations inPFKM have been shown to cause Tarui disease due to homozygosity for catalytically inactive M subunits.[7][14] PFKM is confirmed to be involved in muscle PFK deficiency with early-onset hyperuricemia.[7]

Even though PFKM functions to drive glycolysis, its overexpression has been associated withtype 2 diabetes andinsulin resistance in skeletal muscle. One possible explanation suggests that the overexpression is meant to compensate for theallosteric inhibition ofPFK1 as a result of excessoxidation of freefatty acids and accumulation of citrate andacetyl-CoA.[14]

Interactions

[edit]

PFKM has been shown tointeract withATP6V0A4.[15]

Interactive pathway map

[edit]

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

  1. ^The interactive pathway map can be edited at WikiPathways:"GlycolysisGluconeogenesis_WP534".

See also

[edit]

References

[edit]
  1. ^abcGRCm38: Ensembl release 89: ENSMUSG00000033065Ensembl, May 2017
  2. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ab"Entrez Gene: PFKM phosphofructokinase, muscle".
  5. ^Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y (Dec 1989). "The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK".DNA.8 (10):733–43.doi:10.1089/dna.1989.8.733.PMID 2533063.
  6. ^abcdeVora S, Seaman C, Durham S, Piomelli S (Jan 1980)."Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system".Proceedings of the National Academy of Sciences of the United States of America.77 (1):62–6.Bibcode:1980PNAS...77...62V.doi:10.1073/pnas.77.1.62.PMC 348208.PMID 6444721.
  7. ^abcdVora S, Davidson M, Seaman C, Miranda AF, Noble NA, Tanaka KR, Frenkel EP, Dimauro S (Dec 1983)."Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency".The Journal of Clinical Investigation.72 (6):1995–2006.doi:10.1172/JCI111164.PMC 437040.PMID 6227635.
  8. ^Koster JF, Slee RG, Van Berkel TJ (Apr 1980). "Isoenzymes of human phosphofructokinase".Clinica Chimica Acta; International Journal of Clinical Chemistry.103 (2):169–73.doi:10.1016/0009-8981(80)90210-7.PMID 6445244.
  9. ^abcdMusumeci O, Bruno C, Mongini T, Rodolico C, Aguennouz M, Barca E, Amati A, Cassandrini D, Serlenga L, Vita G, Toscano A (Apr 2012). "Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII)".Neuromuscular Disorders.22 (4):325–30.doi:10.1016/j.nmd.2011.10.022.PMID 22133655.S2CID 20133199.
  10. ^abBrüser A, Kirchberger J, Kloos M, Sträter N, Schöneberg T (May 2012)."Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase".The Journal of Biological Chemistry.287 (21):17546–53.doi:10.1074/jbc.M112.347153.PMC 3366854.PMID 22474333.
  11. ^Usenik A, Legiša M (23 November 2010)."Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase".PLOS ONE.5 (11): e15447.Bibcode:2010PLoSO...515447U.doi:10.1371/journal.pone.0015447.PMC 2990764.PMID 21124851.
  12. ^Graham DB, Becker CE, Doan A, Goel G, Villablanca EJ, Knights D, Mok A, Ng AC, Doench JG, Root DE, Clish CB, Xavier RJ (21 July 2015)."Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst".Nature Communications.6: 7838.Bibcode:2015NatCo...6.7838G.doi:10.1038/ncomms8838.PMC 4518307.PMID 26194095.
  13. ^Kahn A, Meienhofer MC, Cottreau D, Lagrange JL, Dreyfus JC (Apr 1979). "Phosphofructokinase (PFK) isozymes in man. I. Studies of adult human tissues".Human Genetics.48 (1):93–108.doi:10.1007/bf00273280.PMID 156693.S2CID 23300861.
  14. ^abcKeildson S, Fadista J, Ladenvall C, Hedman ÅK, Elgzyri T, Small KS, Grundberg E, Nica AC, Glass D, Richards JB, Barrett A, Nisbet J, Zheng HF, Rönn T, Ström K, Eriksson KF, Prokopenko I, Spector TD, Dermitzakis ET, Deloukas P, McCarthy MI, Rung J, Groop L, Franks PW, Lindgren CM, Hansson O (Mar 2014)."Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity".Diabetes.63 (3):1154–65.doi:10.2337/db13-1301.PMC 3931395.PMID 24306210.
  15. ^Su Y, Zhou A, Al-Lamki RS, Karet FE (May 2003)."The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans".The Journal of Biological Chemistry.278 (22):20013–8.doi:10.1074/jbc.M210077200.PMID 12649290.

Further reading

[edit]
Transferases:phosphorus-containing groups (EC 2.7)
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4)
2.7.1:OH acceptor
2.7.2:COOH acceptor
2.7.3:N acceptor
2.7.4:PO4 acceptor
2.7.6:diphosphotransferase
(P2O7)
2.7.7:nucleotidyltransferase
(PO4-nucleoside)
Polymerase
DNA polymerase
DNA-directed DNA polymerase
I/A
γ
θ
ν
T7
Taq
II/B
α
δ
ε
ζ
Pfu
III/C
IV/X
β
λ
μ
TDT
V/Y
η
ι
κ
RNA-directed DNA polymerase
Reverse transcriptase
Telomerase
RNA polymerase
Phosphorolytic
3' to 5'exoribonuclease
Nucleotidyltransferase
Guanylyltransferase
Other
2.7.8: miscellaneous
Phosphatidyltransferases
Glycosyl-1-phosphotransferase
2.7.10-2.7.13:protein kinase
(PO4; protein acceptor)
2.7.10:protein-tyrosine
2.7.11:protein-serine/threonine
2.7.12: protein-dual-specificity
2.7.13: protein-histidine
Glycolysis
Gluconeogenesis only
tooxaloacetate:
fromlactate (Cori cycle):
fromalanine (Alanine cycle):
fromglycerol:
Regulatory
Retrieved from "https://en.wikipedia.org/w/index.php?title=PFKM&oldid=1265118607"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp