Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Music sequencer

From Wikipedia, the free encyclopedia
Device or software that records, edits or plays back musical notes

Amusic sequencer (oraudio sequencer or simplysequencer) is a device orapplication software that can record, edit, or play backmusic, by handlingnote and performance information in several forms, typicallyCV/Gate,MIDI, orOpen Sound Control, and possiblyaudio andautomation data fordigital audio workstations (DAWs) andplug-ins.[note 1][1]

Overview

[edit]

Modern sequencers

[edit]
1980s typical software sequencer platform, usingAtari Mega ST computer
Today's typical software sequencer, supportingmultitrack audio andplug-ins (Steinberg Cubase 6[2])
User interface on Steinberg Cubase 6, adigital audio workstation with an integrated software sequencer
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(October 2011) (Learn how and when to remove this message)

The advent ofMusical Instrument Digital Interface (MIDI) and theAtari ST home computer in the 1980s gave programmers the opportunity to design software that could more easily record and play back sequences of notes played or programmed by a musician. This software also improved on the quality of the earlier sequencers which tended to be mechanical sounding and were only able to play back notes of exactly equal duration. Software-based sequencers allowed musicians to program performances that were more expressive and more human. These new sequencers could also be used to control externalsynthesizers, especiallyrackmountedsound modules, and it was no longer necessary for each synthesizer to have its own devoted keyboard.

As the technology matured, sequencers gained more features, such as the ability to recordmultitrack audio. Sequencers used for audio recording are calleddigital audio workstations (DAWs).

Many modern sequencers can be used to controlvirtual instruments implemented as softwareplug-ins. This allows musicians to replace expensive and cumbersome standalone synthesizers with their software equivalents.

Today the term "sequencer" is often used to describe software. However, hardware sequencers still exist.Workstation keyboards have their own proprietary built-in MIDI sequencers.Drum machines and some older synthesizers have their own step sequencer built in. There are still alsostandalone hardware MIDI sequencers, although the market demand for those has diminished greatly due to the greater feature set of their software counterparts.

Types of music sequencer

[edit]

Music sequencers can be categorized by handling data types, such as:

Also, a music sequencer can be categorized by its construction and supported modes.

Analog sequencer

[edit]
An analog sequencer
See also:List of music sequencers § Analog sequencers

Analog sequencers are typically implemented withanalog electronics, and play the musical notes designated by a series of knobs or sliders corresponding to each musical note (step). It is designed for bothcomposition andlive performance; users can change the musical notes at any time without regard to recording mode. The time interval between each musical note (length of each step) may be independently adjustable. Typically, analog sequencers are used to generate repeatedminimalistic phrases which may be reminiscent ofTangerine Dream,Giorgio Moroder ortrance music.

Step sequencer (step recording mode)

[edit]
Astep rhythm sequencer on the drum machine
Astep note sequencer on the bass machine
See also:List of music sequencers § Step sequencers (supported on)

On step sequencers, musical notes are rounded into steps of equal time intervals, and users can enter each musical note without exact timing; Instead, the timing andduration of each step can be designated in several different ways:

In general, step mode, along with roughly quantized semi-realtime mode, is often supported on the drum machines, bass machines and severalgroove machines.

Realtime sequencer (realtime recording mode)

[edit]
A realtime sequencer on the synthesizer
See also:List of music sequencers § Digital sequencers, andList of music sequencers § Software sequencers and DAWs with sequencing features

Realtime sequencers record the musical notes inreal-time as onaudio recorders, and play back musical notes with designatedtempo,quantizations, andpitch. For editing, usually "punch in/punch out" features originated in thetape recording are provided, although it requires sufficient skills to obtain the desired result. For detailed editing, possibly another visual editing mode undergraphical user interface may be more suitable. Anyway, this mode provides usability similar to audio recorders already familiar to musicians, and it is widely supported on software sequencers, DAWs, and built-in hardware sequencers.

Software sequencer

[edit]
See also:List of music sequencers § Software sequencers and DAWs with sequencing features

Asoftware sequencer is a class of application software providing a functionality of music sequencer, and often provided as one feature of the DAW or the integrated music authoring environments. The features provided as sequencers vary widely depending on the software; even an analog sequencer can be simulated. The user may control the software sequencer either by using thegraphical user interfaces or a specializedinput devices, such as aMIDI controller.

Typical features on software sequencers

Numerical editor onTracker

Score editor
 

Piano roll editor
withstrip chart

Audio and MIDI tracks on DAW

Automated,software studio environment includinginstruments andeffect processors

Loop sequencer
 

Sample editor
withbeat slicer

Vocal editor
forpitch andtiming

Audio sequencer

[edit]

Alternative subsets of audio sequencers include:

A typica DAW (Ardour)
A typica DAW (Ardour)
Digital audio workstation (DAW),hard disk recorder — a class of audio software or dedicated system primarily designed to record, edit, and play backdigital audio, first appeared in the late 1970s and emerging since the 1990s. After the 1990s–2000s, several DAWs for music production were integrated with music sequencer.In today, "DAW integrated withMIDI sequencer" is often simply abbreviated as "DAW", or sometimes referred as "Audio and MIDI sequencer",[7]etc. On the later usage, the term "audio sequencer" is just a synonym for the "DAW".

A typical loop-based music software (Cubase 6 LoopMash 2)
A typical loop-based music software (Cubase 6 LoopMash 2)
Loop-based music software — a class ofmusic software forloop-based music compositions and remix, emerging since late 1990s. Typical software includedACID Pro (1998),Ableton Live (2001),GarageBand (2004),etc. And now, several of them are referred as DAW, resulting of the expansions and/or integrations.
Its core feature,audio time stretching and pitch scaling allows user to handle audio samples (loops) with the analogy ofMIDI data, in several aspects; user can designatepitches anddurations independently on short music samples, as on MIDI notes, toremix a song.

This type of software actually controls sequences of audio samples; thus, it can potentially be called an "audio sequencer".

A typical Tracker software (MilkyTracker)
A typicalTracker software (MilkyTracker)
Tracker (music software) — a class of software music sequencer with embeddedsample players, developed since the 1980s. Although it provides earlier "sequence of sampling sound" similar togrooveboxes and laterloop-based music software, its design is slightly dated, and rarely referred asaudio sequencer.
A typical groovebox (Akai MPC60) providing sampler and sequencer
A typicalgroovebox (Akai MPC60) providing sampler and sequencer
Phrase sampler (or phrase sampling) — similar to above, musicians orremixers sometimes remixed or composed songs by sampling relatively long phrases or part of songs, and then rearranging these ongrooveboxes or a combination ofsampler (musical instrument) and sequencer.

This technique is possibly referred as "audio sequencing".

Beat slicing — before the DAW became popular, several musicians sometimes derived various beats from limited drum sampleloops by slicing beats and rearranging them onsamplers. This technique, called "beat slicing", was popularized with the introduction of "beat slicer" tool, especially the "ReCycle" released in 1992.

Possibly it may be one origin of "audio sequencing".

History

[edit]

Early sequencers

[edit]
See also:Category:Mechanical musical instruments andMusic box § Evolving box production
Barrel with pins on a large stationarybarrel organ
Music roll on barrel organ

The early music sequencers were sound-producing devices such asautomatic musical instruments,music boxes,mechanical organs,player pianos, andOrchestrions. Player pianos, for example, had much in common with contemporary sequencers. Composers or arrangers transmitted music topiano rolls which were subsequently edited by technicians who prepared the rolls for mass duplication. Eventually consumers were able to purchase these rolls and play them back on their own player pianos.

The origin of automatic musical instruments seems remarkably old. As early as the 9th century, thePersian (Iranian)Banū Mūsā brothers invented ahydropoweredorgan using exchangeable cylinders with pins,[8] and also anautomaticflute-playing machine usingsteam power,[9][10] as described in theirBook of Ingenious Devices. The Banu Musa brothers' automatic flute player was the firstprogrammable music sequencer device,[11] and the first example of repetitivemusic technology, powered byhydraulics.[12]

In 1206,Al-Jazari, anArab engineer, invented programmable musicalautomata,[13] a "robotband" which performed "more than fifty facial and body actions during each musical selection."[14] It was notably the first programmabledrum machine. Among the fourautomaton musicians were two drummers. It was a drum machine wherepegs (cams) bump into littlelevers that operated the percussion. The drummers could be made to play different rhythms and different drum patterns if the pegs were moved around.[15]

In the 14th century, rotating cylinders with pins were used to play acarillon (steam organ) in Flanders,[citation needed] and at least in the 15th century,barrel organs were seen in the Netherlands.[16]

Player piano (1920) controlled bypiano roll
RCA Mark II (1957), controlled via wide punched-paper roll

In the late-18th or early-19th century, with technological advances of theIndustrial Revolution various automatic musical instruments were invented. Some examples:music boxes,barrel organs andbarrel pianos consisting of a barrel or cylinder with pins or a flat metal disc with punched holes; ormechanical organs,player pianos andorchestrions usingbook music /music rolls (piano rolls) with punched holes, etc. These instruments were disseminated widely as popular entertainment devices prior to the inventions ofphonographs,radios, andsound films which eventually eclipsed all such home music production devices. Of them all, punched-paper-tape media had been used until the mid-20th century. The earliest programmablemusic synthesizers including theRCA Mark II Sound Synthesizer in 1957, and the Siemens Synthesizer in 1959, were also controlled viapunch tapes similar topiano rolls.[17][18][19]

Additional inventions grew out ofsound film audio technology. Thedrawn sound technique which appeared in the late 1920s, is notable as a precursor of today's intuitivegraphical user interfaces. In this technique, notes and various sound parameters are triggered by hand-drawn black ink waveforms directly upon the film substrate, hence they resemble piano rolls (or the 'strip charts' of the modern sequencers/DAWs). Drawn soundtrack was often used in early experimental electronic music, including theVariophone developed by Yevgeny Sholpo in 1930, and theOramics designed byDaphne Oram in 1957, and so forth.

Analog sequencers

[edit]
Early commercially available analog sequencers (bottom) onBuchla 100 (1964/1966)[20]
Moog sequencer module (top left, probably added after 1968) onMoog Modular (1964)
Main article:Analog sequencer
[icon]
This sectionneeds expansion. You can help byadding to it.(April 2017)

During the 1940s–1960s,Raymond Scott, an American composer of electronic music, invented various kind of music sequencers for his electric compositions. The "Wall of Sound", once covered on the wall of his studio in New York during the 1940s–1950s, was anelectro-mechanical sequencer to produce rhythmic patterns, consisting of steppingrelays (used ondial pulsetelephone exchange),solenoids, control switches, and tone circuits with 16 individualoscillators.[21] Later,Robert Moog would explain it in such terms as "the whole room would go 'clack – clack – clack', and the sounds would come out all over the place".[22]The Circle Machine, developed in 1959, hadincandescent bulbs each with its ownrheostat, arranged in a ring, and a rotating arm withphotocell scanning over the ring, to generate an arbitrary waveform. Also, the rotating speed of the arm was controlled via the brightness of lights, and as a result, arbitrary rhythms were generated.[23]The first electronic sequencer was invented by Raymond Scott, usingthyratrons andrelays.[24]

Clavivox, developed since 1952, was a kind of keyboard synthesizer with sequencer.[verification needed] On its prototype, atheremin manufactured by young Robert Moog was utilized to enableportamento over 3-octave range, and on later version, it was replaced by a pair ofphotographic film and photocell for controlling the pitch byvoltage.[22]

In 1968,Ralph Lundsten andLeo Nilsson had a polyphonic synthesizer with sequencer calledAndromatic built for them byErkki Kurenniemi.[25]

Step sequencers

[edit]
Electro-mechanical disc sequencer onearly drum machine (1959)
Eko ComputeRhythm (1972),[26][27] one of the earliest programmable drum machines
Firstman SQ-01 (1980),[28] one of the earliest stepbass machines
See also:Drum machine,Bass synth, andGroovebox
This sectionmay beconfusing or unclear to readers. Please helpclarify the section. There might be a discussion about this onthe talk page.(October 2011) (Learn how and when to remove this message)

Thestep sequencers played rigid patterns of notes using a grid of (usually) 16 buttons, or steps, each step being 1/16 of ameasure. These patterns of notes were then chained together to form longer compositions. Sequencers of this kind are still in use, mostly built intodrum machines andgrooveboxes. They are monophonic by nature, although some aremulti-timbral, meaning that they can control several different sounds but only play one note on each of those sounds.[clarification needed]

Early computers

[edit]
Main article:Computer music
CSIRAC played the earliestcomputer music in 1951

On the other hand, software sequencers were continuously utilized since the 1950s in the context ofcomputer music, including computer-played music (software sequencer), computer-composed music (music synthesis), and computersound generation (sound synthesis). In June 1951, the first computer musicColonel Bogey was played onCSIRAC, Australia's first digital computer.[29][30] In 1956,Lejaren Hiller at theUniversity of Illinois at Urbana–Champaign wrote one of the earliest programs forcomputer music composition onILLIAC, and collaborated on the first piece,Illiac Suite for String Quartet, withLeonard Issaction.[31] In 1957Max Mathews atBell Labs wroteMUSIC, the first widely used program for sound generation, and a 17-second composition was performed by theIBM 704 computer. Subsequently, computer music was mainly researched on the expensivemainframe computers in computer centers, until the 1970s whenminicomputers and thenmicrocomputers became available in this field.

In Japan

[edit]

In Japan, experiments in computer music date back to 1962, whenKeio University professor Sekine andToshiba engineer Hayashi experimented with theTOSBAC computer. This resulted in a piece entitledTOSBAC Suite.[32]

Early computer music hardware

[edit]
DDP-24 S Block (expansion card rack unit) that is assumed theA/D converters used for GROOVE (1970) by Max Mathews.

In 1965,[33]Max Mathews and L. Rosler developedGraphic 1, an interactivegraphical sound system (that implies sequencer) on which one could draw figures using a light-pen that would be converted into sound, simplifying the process ofcomposing computer-generated music.[34][35] It usedPDP-5 minicomputer for data input, andIBM 7094 mainframe computer for rendering sound.

Also in 1970, Mathews and F. R. Moore developed theGROOVE (Generated Real-time Output Operations onVoltage-controlled Equipment) system,[36] a first fully developedmusic synthesis system for interactive composition (that implies sequencer) and realtime performance, using 3C/HoneywellDDP-24[37] (or DDP-224[38]) minicomputers. It used a CRT display to simplify the management of music synthesis in realtime, 12-bitD/A converter for realtime sound playback, an interface forCV/gate analog devices, and even several controllers including a musical keyboard, knobs, and rotatingjoysticks to capture realtime performance.[34][38][35]

EMS Sequencer 256 (1971), branched fromSynthi 100.

Digital sequencers

[edit]

In 1971,Electronic Music Studios (EMS) released one of the first digital sequencer products as a module ofSynthi 100, and its derivation,Synthi Sequencer series.[39][40]After then,Oberheim released the DS-2 Digital Sequencer in 1974,[41] andSequential Circuits released Model 800 in 1977[42]

In Japan

[edit]

In 1977,Roland Corporation released theMC-8 MicroComposer, also calledcomputer music composer by Roland. It was an early stand-alone,microprocessor-based, digital CV/gate sequencer,[43][44] and an earlypolyphonic sequencer.[45][46] It equipped akeypad to enternotes as numeric codes, 16 KB ofRAM for a maximum of 5200 notes (large for the time), and apolyphony function which allocated multiple pitchCVs to a singleGate.[47] It was capable of eight-channel polyphony, allowing the creation ofpolyrhythmic sequences.[48][43][44] The MC-8 had a significant impact on popularelectronic music, with the MC-8 and its descendants (such as theRoland MC-4 Microcomposer) impacting popular electronic music production in the 1970s and 1980s more than any other family of sequencers.[48] The MC-8's earliest known users wereYellow Magic Orchestra in 1978.[49]

Music workstations

[edit]
See also:Music workstation
Synclavier I (1977)
Fairlight CMI (1979)supporting MCL(sequencer)

In 1975,New England Digital (NED) released ABLE computer (microcomputer)[50] as a dedicated data processing unit for Dartmouth Digital Synthesizer (1973), and based on it, later Synclavier series were developed.

TheSynclavier I, released in September 1977,[51] was one of the earliest digitalmusic workstation product with multitrack sequencer. Synclavier series evolved throughout the late-1970s to the mid-1980s, and they also established integration ofdigital-audio and music-sequencer, on their Direct-to-Disk option in 1984, and later Tapeless Studio system.

Page R on Fairlight

In 1982, renewed theFairlight CMI Series II and added new sequencer software "Page R", which combinedstep sequencing withsample playback.[52]

While there were earlier microprocessor-based sequencers for digital polyphonic synthesizers,[note 4] their early products tended to prefer the newer internal digital buses than the old-style analogue CV/gate interface once used on their prototype system. Then in the early-1980s, they also re-recognized the needs ofCV/gate interface, andsupported it along with MIDI as options.

In Japan

[edit]

Yamaha's GS-1, their firstFMdigital synthesizer, was released in 1980.[53] To program the synthesizer, Yamaha built a custom computer workstationdesigned to be used as a sequencer for the GS-1[citation needed][failed verification]. It was only available at Yamaha's headquarters in Japan (Hamamatsu) and the United States (Buena Park, California).[citation needed]

MIDI sequencers

[edit]
Main article:MIDI
See also:Comparison of MIDI standards,Comparison of MIDI editors and sequencers, andGroovebox

In June 1981,Roland Corporation founderIkutaro Kakehashi proposed the concept of standardization between different manufacturers' instruments as well as computers, toOberheim Electronics founderTom Oberheim andSequential Circuits presidentDave Smith. In October 1981, Kakehashi, Oberheim and Smith discussed the concept with representatives fromYamaha,Korg andKawai.[54] In 1983, theMIDI standard was unveiled by Kakehashi and Smith.[55][56] The first MIDI sequencer was the Roland MSQ-700, released in 1983.[57]

It was not until the advent of MIDI thatgeneral-purpose computers started to play a role as sequencers. Following the widespread adoption of MIDI, computer-based MIDI sequencers were developed. MIDI-to-CV/gate converters were then used to enableanalogue synthesizers to be controlled by a MIDI sequencer.[44] Since its introduction, MIDI has remained the musical instrument industry standard interface through to the present day.[58]

Personal computers

[edit]
See also:MIDI,Computer music,Sampler (musical instrument),Audio sequencer, andMusic tracker
[icon]
This sectionneeds expansion. You can help byadding to it.(February 2023)
Moog Song Producer (1983)MIDI & CV/Gate interface on SynAmp
Tracker software (developed since 1987)

In 1987, software sequencers calledtrackers were developed to realize the low-cost integration of sampling sound and interactive digital sequencer as seen onFairlight CMI II "Page R". They became popular in the 1980s and 1990s as simple sequencers for creatingcomputer game music, and remain popular in thedemoscene andchiptune music.

Modern computer digital audio software after the 2000s, such asAbleton Live, incorporates aspects of sequencers among many other features.[clarification needed]

In Japan

[edit]

In 1978, Japanesepersonal computers such as theHitachiBasic Master equipped the low-bit D/A converter to generate sound which can be sequenced usingMusic Macro Language (MML).[59] This was used to producechiptunevideo game music.[32]

It was not until the advent ofMIDI, introduced to the public in 1983, thatgeneral-purpose computers really started to play a role as software sequencers.[44]NEC's personal computers, thePC-88 andPC-98, added support forMIDI sequencing with MML programming in 1982.[32] In 1983,Yamaha modules for theMSX featured music production capabilities,[60][61] real-timeFM synthesis with sequencing, MIDI sequencing,[62][61] and agraphical user interface for the software sequencer.[63][61] Also in 1983,Roland Corporation's CMU-800sound module introduced music synthesis and sequencing to the PC,Apple II,[64] andCommodore 64.[65]

The spread of MIDI on personal computers was facilitated by Roland'sMPU-401, released in 1984. It was the first MIDI-equipped PCsound card, capable of MIDI sound processing[66] and sequencing.[67][68] After Roland sold MPUsound chips to other sound card manufacturers,[66] it established a universal standard MIDI-to-PC interface.[69] Following the widespread adoption of MIDI, computer-basedMIDI software sequencers were developed.[44]

Visual timeline of rhythm sequencers

[edit]
Main articles:Drum machine,Groovebox,Beat slicing, andSampler (musical instrument)

Mechanical (pre-20th century)





Rhythmicon (1930)




Drum machine
(1959–)





Transistorized drum machine (1964–)





Stepdrum machine (1972–)





Digital drum machine (1980–)





Groove machine (1981–)





"Page R" onFairlight (1982)





Tracker (1987–)





Beat slicer (1990s–)

Loop sequencer (1998–)





Note manipulation on audio tracks (2009–)

See also

[edit]

Notes

[edit]
  1. ^On WhatIs.com of TechTarget, an author seems to define a term "Sequencer" as an abbreviation of "MIDI sequencer".
    • Margaret Rouse (April 2005)."sequencer".WhatIs.com. TechTarget. Archived fromthe original on 2015-06-27.In digital audio recording, a sequencer is a program in a computer or stand-alone keyboard unit that puts together a sound sequence from a series (or sequence) of Musical Instrument Digital Interface ( MIDI ) events (operations). The MIDI sequencer allows the user to record and edit a musical performance without using an audio-based input source. ...
  2. ^Automation parameters in DAWs are often interoperable withMIDI messages, i.e. Control Changes (CC) orSystem Exclusive (SysEx); in that case, it can be controlled inreal-time via pre-assigned MIDI messages generated byMIDI controllers orMIDI sequencers,etc.   And even more so, in several DAWs, automation parameters are explicitly recorded as MIDI messages on their embedded MIDI sequencers. (SeePrice 2006)
  3. ^The termaudio sequencer seems to be relatively new expression and seems to be not clearly defined, yet. For example, "DAW integrated with MIDI sequencer" is often referred as "Audio and MIDI sequencer". However, in this usage, the term "audio sequencer" is just a synonym for the "DAW", and beyond the scope of this article. In that case, please checkDigital audio workstation.
  4. ^In 1974–1975, Australian computer music engineer Tony Furse developed the MC6800-basedQasar M8 with a software sequencerMUSEQ 8, with a minimum price of $8,000. In 1976, it was licensed toFairlight Instruments Pty Ltd., and eventually Fairlight CMI was released in 1979 (for details, seeFairlight CMI).
    Also in 1975,New England Digital released original microprocessor-basedABLE computer (utilizing mini-computer architecture) as a future migration target of Dartmouth Digital Synthesizer. Their commercial version of digital synthesizer,Synclavier I was first shipped in 1977 (for details, seeSynclavier).

References

[edit]
  1. ^Pejrolo, Andrea (2011)."1.7.1 The Primary Goals You Want to Achieve with Your Audio Sequencer".Creative Sequencing Techniques for Music Production: A Practical Guide to Pro Tools, Logic, Digital Performer, and Cubase. Taylor & Francis. p. 48.ISBN 978-0-240-52216-6.Note: an example of section title containing "Audio Sequencer"
  2. ^"Cubase 6 screenshot licensed under CC-BY-SA-3.0". Steinberg Media Technologies GmbH.Archived from the original on 2011-11-09.
  3. ^Rothstein, Joseph (1995).MIDI: A Comprehensive Introduction. Computer Music and Digital Audio Series. Vol. 7. A-R Editions, Inc. pp. 77,122.ISBN 978-0-89579-309-6.
  4. ^Pinch, Trevor. J.; Trocco, Frank (2009)."Buchla's Box".Analog Days: The Invention and Impact of the Moog Synthesizer (reprint ed.). Harvard University Press. pp. 55–56.ISBN 978-0-674-04216-2.
    "Subotnick suggested that using a light source to control sound might be promising. ... Later he [Buchla] turned this into an electro mechanical sequencer by introducing step relays and a dial. ... Buchla, like Moog, realized that voltage control ... But Buchla was after something different; ... Buchla was led to the electronic sequencer—a device that later was used to make much influential pop, rock, and dance music. A sequencer produces predetermined control voltages in a cycle or sequence and can endlessly recycle ..."
    Note: for a sequencer using a light source, see "Circle Machine" on#Analog sequencers andRaymond Scott#Electronics and research.
  5. ^Price, Simon."Using Mixer Automation In Reason – Reason Tips & Techniques". Technique: Reason Notes.Sound on Sound. No. September 2006.Archived from the original on 2016-03-10.
    "Controller Data Vs. Automation /... sequencer package such as Logic or Pro Tools, ... are akin to automation on professional hardware mixing consoles, ... This type of automation system is different to using MIDI Continuous Controller[Control Changes] (CC) data, ... In Reason, automation is MIDI Controller[Control Changes] data, but with some specialised tools for handling the data and playing it back. ...",
    "Recording Mixer Automation /As automation in Reason is MIDI CC data, it must be recorded on a sequencer track."
  6. ^Pejrolo, Andrea (2011)."1.7.1 The Primary Goals You Want to Achieve with Your Audio Sequencer".Creative Sequencing Techniques for Music Production: A Practical Guide to Pro Tools, Logic, Digital Performer, and Cubase. Taylor & Francis. p. 48.ISBN 978-0-240-52216-6. (sub-section title contains the expression "Audio Sequencer")
  7. ^MusE – The open source sequencer,MusE is a MIDI/Audio sequencer with recording and editing capabilities ...
  8. ^Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments".Music Educators Journal.54 (2):45–49.doi:10.2307/3391092.JSTOR 3391092.S2CID 190524140.
  9. ^Koetsier, Teun (2001). "On the prehistory of programmable machines: musical automata, looms, calculators".Mechanism and Machine Theory.36 (5):589–603.doi:10.1016/S0094-114X(01)00005-2.
  10. ^Banu Musa (1979).The book of ingenious devices (Kitāb al-ḥiyal). Translated byDonald Routledge Hill.Springer. pp. 76–7.ISBN 9027708339.
  11. ^Long, Jason; Murphy, Jim; Carnegie, Dale; Kapur, Ajay (12 July 2017)."Loudspeakers Optional: A history of non-loudspeaker-based electroacoustic music".Organised Sound.22 (2).Cambridge University Press:195–205.doi:10.1017/S1355771817000103.
  12. ^Levaux, Christophe (12 July 2017)."The Forgotten History of Repetitive Audio Technologies".Organised Sound.22 (2).Cambridge University Press:187–194.doi:10.1017/S1355771817000097.
  13. ^Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments".Music Educators Journal.54 (2):45–49.doi:10.2307/3391092.JSTOR 3391092.S2CID 190524140.
  14. ^Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical Instruments",Music Educators Journal,54 (2), MENC_ The National Association for Music Education:45–49,doi:10.2307/3391092,JSTOR 3391092,S2CID 190524140
  15. ^Noel Sharkey,A 13th Century Programmable Robot (Archive),University of Sheffield.
  16. ^Schlesinger, Kathleen (1911)."Barrel-organ" . InChisholm, Hugh (ed.).Encyclopædia Britannica. Vol. 3 (11th ed.). Cambridge University Press. pp. 432–434.
  17. ^"The RCA Synthesiser".120 Years of Electronic Music (120years.net). 2014-02-11.Archived from the original on 2011-10-26.—(PDF versionArchived 2012-04-02 at theWayback Machine is available)
  18. ^"Das Siemens-Studio für elektronische Musik von Alexander Schaaf und Helmut Klein" (in German).Deutsches Museum. Archived fromthe original on 2013-09-30.
  19. ^Holmes, Thom (2012)."Early Synthesizers and Experimenters".Electronic and Experimental Music: Technology, Music, and Culture (4th ed.). Routledge. pp. 190192.ISBN 978-1-136-46895-7. See also excerpt from pp. 157-160 inChapter 6 ofEarly Synthesizers and Experimenters.
  20. ^Holmes, Thom (2008).Electronic and experimental music: technology, music, and culture (3rd ed.). Routledge. p. 222.ISBN 978-0-415-95781-6.Moog admired Buchla's work, recently stating that Buchla designed a system not only for "making new sounds but [for] making textures out of these sounds by specifying when these sounds could change and how regular those change would be."
  21. ^"Wall of Sound (sequencer)".RaymondScott.com. Archived fromthe original on 2011-11-13.
  22. ^abMoog, Robert."Memories of Raymond Scott".RaymondScott.com. Archived fromthe original on 2011-11-06.
  23. ^"Circle Machine".RaymondScott.com. Archived fromthe original on 2011-09-27.—includes 2 sound files: Raymond Scott's demonstration, and commercial soundtrack for new batteries ofFord Motors.
  24. ^Raymond Scott Artifacts, p. 13
  25. ^Städje, Jörgen (2012-10-06)."Andromatic, den automatiska andromedaren". International Data Group (IDG).Archived from the original on 2012-10-07.
  26. ^"EKO Computerhythm (1972)".Jarrography – The ultimate Jean Michel Jarre discography.Archived from the original on 2012-05-03.
  27. ^"EKO Computerhythm".SynthMaster.de.Archived from the original on 2016-03-04.
  28. ^"Multivox International".SYNRISE (in German). Archived fromthe original on 2003-04-20.
  29. ^"CSIRAC: Australia's first computer". Australia:Commonwealth Scientific and Industrial Research Organisation (CSIRO).Archived from the original on 2007-11-16. Retrieved2007-12-21.
  30. ^Fildes, Jonathan (2008-06-17)."'Oldest' computer music unveiled".BBC News Online.Archived from the original on 2009-01-11. Retrieved2008-06-18.—another oldest known recording ofcomputer realized music played by theFerranti Mark 1, captured byBBC in Autumn, 1951; the songsBaa Baa Black Sheep andIn the Mood.
  31. ^Hiller, Lejaren (Winter 1981). "Composing with Computer: A Progress Report".Computer Music Journal.5 (4):7–21.doi:10.2307/3679501.JSTOR 3679501.
    also available inCurtis Roads, ed. (1992-10-08).The Music Machine: Selected Readings from Computer Music Journal. MIT Press (1989/1992). pp. 75.ISBN 978-0-262-68078-3.
  32. ^abcShimazu, Takehito (1994). "The History of Electronic and Computer Music in Japan: Significant Composers and Their Works".Leonardo Music Journal.4:102–106.doi:10.2307/1513190.JSTOR 1513190.S2CID 193084745.
  33. ^Ninke, William (1965), "Graphic 1: A Remote Graphical Display Console System",Proceedings of Fall Joint Computer Conference, vol. 27
  34. ^abHolmes, Thom (2008). "Digital Synthesis and Computer Music".Electronic and experimental music: technology, music, and culture. Taylor & Francis. pp. 254.ISBN 978-0-415-95781-6.
  35. ^abRoads, Curtis (Winter 1980). "Interview with Max Mathews".Computer Music Journal.4 (4).
    inCurtis Roads, ed. (1992-10-08).The Music Machine: Selected Readings from Computer Music Journal. MIT Press (1989/1992). pp. 5.ISBN 978-0-262-68078-3.
  36. ^Max V., Mathews; F.R., Moore (1970). "GROOVE—a program to compose, store, and edit functions of time".Communications of the ACM.13 (12).
  37. ^Nyssim Lefford; Eric D. Scheirer & Barry L. Vercoe."An Interview with Barry Vercoe".Experimental Music Studio 25. Machine Listening Group, MIT Media Laboratory.Archived from the original on 2012-03-31.
  38. ^abBogdanov, Vladimir (2001).All music guide to electronica: the definitive guide to electronic music. Backbeat Books. pp. 320.ISBN 978-0-87930-628-1.
  39. ^Hinton, Graham (2001)."Synthi 100 (1971, formerly Digitana, aka the Delaware)". Electronic Music Studios (Cornwall).Archived from the original on 2013-10-31.
  40. ^Hinton, Graham (2001)."Synthi Sequencer 256 (1971, formerly Synthi Moog Sequencer)". Electronic Music Studios (Cornwall).Archived from the original on 2013-10-31.
  41. ^J.Michmerhuizen; Thomas E. Oberheim (June 1974).DS-2 Digital Sequencer Instruction and Service Manual(PDF). Archived fromthe original(PDF) on 2011-12-18. Retrieved2017-12-06.
  42. ^"Model 800 Sequencer". SynthMuseum.com.Archived from the original on 2011-10-11.
  43. ^abRuss, Martin (2008).Sound Synthesis and Sampling.Focal Press. p. 346.ISBN 978-0240521053. Retrieved21 June 2011.
  44. ^abcdeRuss, Martin (2012).Sound Synthesis and Sampling.CRC Press. p. 192.ISBN 978-1136122149. Retrieved26 April 2017.
  45. ^Paul Théberge (1997),Any Sound You Can Imagine: Making Music/Consuming Technology, page 223,Wesleyan University Press
  46. ^Herbert A. Deutsch (1985),Synthesis: an introduction to the history, theory & practice of electronic music, page 96,Alfred Music
  47. ^Reid, Gordon."The History Of Roland Part 1: 1930–1978".Sound on Sound (Nov 2004).Archived from the original on 2011-06-29. Retrieved2011-06-19.
  48. ^abChris Carter,ROLAND MC8 MICROCOMPOSERArchived 2017-04-20 at theWayback Machine,Sound on Sound, vol.12, no.5, March 1997
  49. ^Yellow Magic Orchestra—Yellow Magic Orchestra atDiscogs
  50. ^"Synclavier Early History". Synclavier European Services.Archived from the original on 2016-11-14.
  51. ^Chadabe, Joel (May 1, 2001)."The Electronic Century Part IV: The Seeds of the Future".Electronic Musician. Archived fromthe original on October 2, 2009.In September 1977, I bought the first Synclavier...
  52. ^"Fairlight – The Whole Story".Audio Media. No. January 1996.Archived from the original on 2017-05-04.Fairlight launched the CMI Series II in 1982, which incorporated their now legendary Page R, the first serious music sequencer, which, according to Paine, "simply blew people away".
  53. ^Roads, Curtis (1996).The computer music tutorial.MIT Press. p. 226.ISBN 0-262-68082-3. Retrieved2011-06-05.
  54. ^Chadabe, Joel (1 May 2000)."Part IV: The Seeds of the Future".Electronic Musician.XVI (5). Penton Media. Archived fromthe original on 28 September 2012.
  55. ^"Technical GRAMMY Award: Ikutaro Kakehashi And Dave Smith". 29 January 2013.Archived from the original on 22 August 2016.
  56. ^"Ikutaro Kakehashi, Dave Smith: Technical GRAMMY Award Acceptance". 9 February 2013.Archived from the original on 9 December 2014.
  57. ^"Roland - Company - History - History".Archived from the original on 2017-07-12. Retrieved2017-05-17.
  58. ^The life and times of Ikutaro Kakehashi, the Roland pioneer modern music owes everything toArchived 2017-04-03 at theWayback Machine,Fact
  59. ^Kunihiko, Nagai; Teruhiro, Takezawa; Kazuma, Yoshimura; KaTsutoshi, Tajima (April 1979)."Micro computer Basic Master (MB-6880)"(PDF) (in Japanese).Archived(PDF) from the original on 2017-09-15.2.特長 ... (4) スピーカーを内蔵しており、プログラムによる音楽の自動演奏が可能である。 /表 I 「ベーシックマスター」の主な仕様一覧 ... 音楽発生機能: 5ビットD/A変換のスピーカー再生 /4.3 音楽発生機能 ...
    Published on:"Special Features: Micro computer and its application".Hitachi Hyoron (April 1979). Japan:Hitachi.Archived from the original on 15 September 2017. Retrieved15 September 2017.
  60. ^Martin Russ,Sound Synthesis and Sampling, page 84,CRC Press
  61. ^abcDavid Ellis,Yamaha CX5MArchived 2017-10-26 at theWayback Machine,Electronics & Music Maker, October 1984
  62. ^Yamaha Music Computer CX5M Owner's Manual. Yamaha. Archived fromthe original on 2015-10-22. Retrieved2018-12-26.
  63. ^Yamaha (5 May 1984).Yamaha CX5M Music Computer Flyer (GB). Retrieved5 May 2018 – via Internet Archive.
  64. ^Roland CMU-800Archived 2017-06-04 at theWayback Machine, Vintage Synth Explorer
  65. ^Happy birthday MIDI 1.0: Slave to the rhythmArchived 2017-10-26 at theWayback Machine,The Register
  66. ^abMIDI INTERFACES FOR THE IBM PCArchived 2015-10-21 at theWayback Machine,Electronic Musician, September 1990
  67. ^"Programming the MPU-401".www.piclist.com.Archived from the original on 6 May 2017. Retrieved5 May 2018.
  68. ^MIDI PROCESSING UNIT MPU-401 TECHNICAL REFERENCE MANUAL,Roland Corporation
  69. ^Peter Manning (2013),Electronic and Computer Music, page 319,Oxford University Press

Further reading

[edit]

List of papers sharing a similar perspective with this Wikipedia article:

External links

[edit]
Look upsequencer in Wiktionary, the free dictionary.
Wikimedia Commons has media related toMusic sequencers.
Music technology
Sound recording
Recording media
Analog recording
Playback transducers
Digital audio
Live music
Electronic music
Software
Professions
People and organizations
Related topics
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Music_sequencer&oldid=1282631060"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp