Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Multivector

From Wikipedia, the free encyclopedia
Element of an exterior algebra
"p-vector" redirects here. For other uses, seeK-vector (disambiguation).

Inmultilinear algebra, amultivector, sometimes calledClifford number ormultor,[1] is an element of theexterior algebraΛ(V) of avector spaceV. This algebra isgraded,associative andalternating, and consists oflinear combinations ofsimplek-vectors[2] (also known asdecomposablek-vectors[3] ork-blades) of the form

v1vk,{\displaystyle v_{1}\wedge \cdots \wedge v_{k},}

wherev1,,vk{\displaystyle v_{1},\ldots ,v_{k}} are inV.

Ak-vector is such a linear combination that ishomogeneous of degreek (all terms arek-blades for the samek). Depending on the authors, a "multivector" may be either ak-vector or any element of the exterior algebra (any linear combination ofk-blades with potentially differing values ofk).[4]

Indifferential geometry, ak-vector is usually a vector in the exterior algebra of thetangent vector space of asmooth manifold; that is, it is an antisymmetrictensor obtained by taking linear combinations of theexterior product ofktangent vectors, for some integerk ≥ 0. Adifferentialk-form is ak-vector in the exterior algebra of thedual of the tangent space, which is also the dual of the exterior algebra of the tangent space.

Fork = 0, 1, 2 and3,k-vectors are often called respectivelyscalars,vectors,bivectors andtrivectors; they are respectively dual to0-forms, 1-forms, 2-forms and 3-forms.[5][6]

Exterior product

[edit]
Main article:Exterior algebra

The exterior product (also called the wedge product) used to construct multivectors is multilinear (linear in each input), associative and alternating. This means for vectorsu,v andw in a vector spaceV and for scalarsα,β, the exterior product has the properties:

The exterior product ofk vectors or a sum of such products (for a singlek) is called a gradek multivector, or ak-vector. The maximum grade of a multivector is the dimension of the vector spaceV.

Linearity in either input together with the alternating property implies linearity in the other input. The multilinearity of the exterior product allows a multivector to be expressed as a linear combination of exterior products of basis vectors ofV. The exterior product ofk basis vectors ofV is the standard way of constructing each basis element for the space ofk-vectors, which has dimension(n
k
)
in the exterior algebra of ann-dimensional vector space.[2]

Area and volume

[edit]

Thek-vector obtained from the exterior product ofk separate vectors in ann-dimensional space has components that define the projected(k − 1)-volumes of thek-parallelotope spanned by the vectors. The square root of the sum of the squares of these components defines the volume of thek-parallelotope.[2][7]

The following examples show that a bivector in two dimensions measures the area of a parallelogram, and the magnitude of a bivector in three dimensions also measures the area of a parallelogram. Similarly, a three-vector in three dimensions measures the volume of a parallelepiped.

It is easy to check that the magnitude of a three-vector in four dimensions measures the volume of the parallelepiped spanned by these vectors.

Multivectors in R2

[edit]

Properties of multivectors can be seen by considering the two-dimensional vector spaceV =R2. Let the basis vectors bee1 ande2, sou andv are given by

u=u1e1+u2e2,v=v1e1+v2e2,{\displaystyle \mathbf {u} =u_{1}\mathbf {e} _{1}+u_{2}\mathbf {e} _{2},\quad \mathbf {v} =v_{1}\mathbf {e} _{1}+v_{2}\mathbf {e} _{2},}

and the multivectoruv, also called a bivector, is computed to be

uv = |u1v1u2v2| (e1e2).{\displaystyle \mathbf {u} \wedge \mathbf {v} \ =\ {\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\ (\mathbf {e} _{1}\wedge \mathbf {e} _{2}).}

The vertical bars denote the determinant of the matrix, which is the area of the parallelogram spanned by the vectorsu andv. The magnitude ofuv is the area of this parallelogram. Notice that becauseV has dimension two the basis bivectore1e2 is the only multivector in ΛV.

The relationship between the magnitude of a multivector and the area or volume spanned by the vectors is an important feature in all dimensions. Furthermore, the linear functional version of a multivector that computes this volume is known as a differential form.

Multivectors in R3

[edit]

More features of multivectors can be seen by considering the three-dimensional vector spaceV =R3. In this case, let the basis vectors bee1,e2, ande3, sou,v andw are given by

u=u1e1+u2e2+u3e3,v=v1e1+v2e2+v3e3,w=w1e1+w2e2+w3e3,{\displaystyle {\begin{aligned}\mathbf {u} &=u_{1}\mathbf {e} _{1}+u_{2}\mathbf {e} _{2}+u_{3}\mathbf {e} _{3},&\mathbf {v} &=v_{1}\mathbf {e} _{1}+v_{2}\mathbf {e} _{2}+v_{3}\mathbf {e} _{3},&\mathbf {w} &=w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3},\end{aligned}}}

and the bivectoruv is computed to be

uv = |u2v2u3v3|(e2e3)+|u1v1u3v3|(e1e3)+|u1v1u2v2|(e1e2).{\displaystyle \mathbf {u} \wedge \mathbf {v} \ =\ {\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)+{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)+{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right).}

The components of this bivector are the same as the components of the cross product. The magnitude of this bivector is the square root of the sum of the squares of its components.

This shows that the magnitude of the bivectoruv is the area of the parallelogram spanned by the vectorsu andv as it lies in the three-dimensional spaceV. The components of the bivector are the projected areas of the parallelogram on each of the three coordinate planes.

Notice that becauseV has dimension three, there is one basis three-vector in ΛV. Compute the three-vector

uvw = |u1v1w1u2v2w2u3v3w3|(e1e2e3).{\displaystyle \mathbf {u} \wedge \mathbf {v} \wedge \mathbf {w} \ =\ {\begin{vmatrix}u_{1}&v_{1}&w_{1}\\u_{2}&v_{2}&w_{2}\\u_{3}&v_{3}&w_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right).}
Derivation of triple exterior product

uvw=(uv)w=(|u2v2u3v3|(e2e3)+|u1v1u3v3|(e1e3)+|u1v1u2v2|(e1e2))(w1e1+w2e2+w3e3)=|u2v2u3v3|(e2e3)(w1e1+w2e2+w3e3)+|u1v1u3v3|(e1e3)(w1e1+w2e2+w3e3)+|u1v1u2v2|(e1e2)(w1e1+w2e2+w3e3)=|u2v2u3v3|(e2e3)w1e1+|u2v2u3v3|(e2e3)w2e2+|u2v2u3v3|(e2e3)w3e3e2e2=0;e3e3=0+|u1v1u3v3|(e1e3)w1e1+|u1v1u3v3|(e1e3)w2e2+|u1v1u3v3|(e1e3)w3e3e1e1=0;e3e3=0+|u1v1u2v2|(e1e2)w1e1+|u1v1u2v2|(e1e2)w2e2+|u1v1u2v2|(e1e2)w3e3e1e1=0;e2e2=0=|u2v2u3v3|(e2e3)w1e1+|u1v1u3v3|(e1e3)w2e2+|u1v1u2v2|(e1e2)w3e3=w1|u2v2u3v3|(e2e1e3)w2|u1v1u3v3|(e1e2e3)+w3|u1v1u2v2|(e1e2e3)=w1|u2v2u3v3|(e1e2e3)w2|u1v1u3v3|(e1e2e3)+w3|u1v1u2v2|(e1e2e3)=(w1|u2v2u3v3|w2|u1v1u3v3|+w3|u1v1u2v2|)(e1e2e3)=|u1v1w1u2v2w2u3v3w3|(e1e2e3){\displaystyle {\begin{aligned}&\mathbf {u} \wedge \mathbf {v} \wedge \mathbf {w} =(\mathbf {u} \wedge \mathbf {v} )\wedge \mathbf {w} \\{}={}&\left({\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)+{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)+{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\right)\wedge \left(w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3}\right)\\{}={}&{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\wedge \left(w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3}\right)\\&{}+{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)\wedge \left(w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3}\right)\\&{}+{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\wedge \left(w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3}\right)\\{}={}&{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\wedge w_{1}\mathbf {e} _{1}+{\cancel {{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\wedge w_{2}\mathbf {e} _{2}}}+{\cancel {{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\wedge w_{3}\mathbf {e} _{3}}}&&\mathbf {e} _{2}\wedge \mathbf {e} _{2}=0;\mathbf {e} _{3}\wedge \mathbf {e} _{3}=0\\&{}+{\cancel {{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)\wedge w_{1}\mathbf {e} _{1}}}+{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)\wedge w_{2}\mathbf {e} _{2}+{\cancel {{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)\wedge w_{3}\mathbf {e} _{3}}}&&\mathbf {e} _{1}\wedge \mathbf {e} _{1}=0;\mathbf {e} _{3}\wedge \mathbf {e} _{3}=0\\&{}+{\cancel {{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\wedge w_{1}\mathbf {e} _{1}}}+{\cancel {{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\wedge w_{2}\mathbf {e} _{2}}}+{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\wedge w_{3}\mathbf {e} _{3}&&\mathbf {e} _{1}\wedge \mathbf {e} _{1}=0;\mathbf {e} _{2}\wedge \mathbf {e} _{2}=0\\{}={}&{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\wedge w_{1}\mathbf {e} _{1}+{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)\wedge w_{2}\mathbf {e} _{2}+{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\right)\wedge w_{3}\mathbf {e} _{3}\\{}={}&-w_{1}{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{2}\wedge \mathbf {e} _{1}\wedge \mathbf {e} _{3}\right)-w_{2}{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)+w_{3}{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\\{}={}&w_{1}{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)-w_{2}{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)+w_{3}{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\\{}={}&\left(w_{1}{\begin{vmatrix}u_{2}&v_{2}\\u_{3}&v_{3}\end{vmatrix}}-w_{2}{\begin{vmatrix}u_{1}&v_{1}\\u_{3}&v_{3}\end{vmatrix}}+w_{3}{\begin{vmatrix}u_{1}&v_{1}\\u_{2}&v_{2}\end{vmatrix}}\right)\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\\{}={}&{\begin{vmatrix}u_{1}&v_{1}&w_{1}\\u_{2}&v_{2}&w_{2}\\u_{3}&v_{3}&w_{3}\end{vmatrix}}\left(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}\right)\\\end{aligned}}}

This shows that the magnitude of the three-vectoruvw is the volume of the parallelepiped spanned by the three vectorsu,v andw.

In higher-dimensional spaces, the component three-vectors are projections of the volume of a parallelepiped onto the coordinate three-spaces, and the magnitude of the three-vector is the volume of the parallelepiped as it sits in the higher-dimensional space.

Grassmann coordinates

[edit]

In this section, we consider multivectors on aprojective spacePn, which provide a convenient set of coordinates for lines, planes and hyperplanes that have properties similar to the homogeneous coordinates of points, calledGrassmann coordinates.[8]

Points in a real projective spacePn are defined to be lines through the origin of the vector spaceRn+1. For example, the projective planeP2 is the set of lines through the origin ofR3. Thus, multivectors defined onRn+1 can be viewed as multivectors onPn.

A convenient way to view a multivector onPn is to examine it in anaffine component ofPn, which is the intersection of the lines through the origin ofRn+1 with a selected hyperplane, such asH:xn+1 = 1. Lines through the origin ofR3 intersect the planeE:z = 1 to define an affine version of the projective plane that only lacks the points for whichz = 0, called the points at infinity.

Multivectors on the projective planeP2

[edit]

Points in the affine componentE:z = 1 of the projective planeP2 have coordinatesx = (x,y, 1). A linear combination of two pointsp = (p1,p2, 1) andq = (q1,q2, 1) defines a plane inR3 that intersects E in the line joiningp andq. The multivectorpq defines a parallelogram inR3 given by

pq = (p2q2)(e2e3)+(p1q1)(e1e3)+(p1q2q1p2)(e1e2).{\displaystyle \mathbf {p} \wedge \mathbf {q} \ =\ (p_{2}-q_{2})(\mathbf {e} _{2}\wedge \mathbf {e} _{3})+(p_{1}-q_{1})(\mathbf {e} _{1}\wedge \mathbf {e} _{3})+(p_{1}q_{2}-q_{1}p_{2})(\mathbf {e} _{1}\wedge \mathbf {e} _{2}).}

Notice that substitution ofαp +βq forp multiplies this multivector by a constant. Therefore, the components ofpq are homogeneous coordinates for the plane through the origin ofR3.

The set of pointsx = (x,y, 1) on the line throughp andq is the intersection of the plane defined bypq with the planeE:z = 1. These points satisfyxpq = 0, that is,

xpq = (xe1+ye2+e3)((p2q2)(e2e3)+(p1q1)(e1e3)+(p1q2q1p2)(e1e2))=0,{\displaystyle \mathbf {x} \wedge \mathbf {p} \wedge \mathbf {q} \ =\ (x\mathbf {e} _{1}+y\mathbf {e} _{2}+\mathbf {e} _{3})\wedge {\big (}(p_{2}-q_{2})(\mathbf {e} _{2}\wedge \mathbf {e} _{3})+(p_{1}-q_{1})(\mathbf {e} _{1}\wedge \mathbf {e} _{3})+(p_{1}q_{2}-q_{1}p_{2})(\mathbf {e} _{1}\wedge \mathbf {e} _{2}){\big )}=0,}

which simplifies to the equation of a line

λ:x(p2q2)+y(p1q1)+(p1q2q1p2)=0.{\displaystyle \lambda :x(p_{2}-q_{2})+y(p_{1}-q_{1})+(p_{1}q_{2}-q_{1}p_{2})=0.}

This equation is satisfied by pointsx =αp +βq for real values of α and β.

The three components ofpq that define the lineλ are called theGrassmann coordinates of the line. Because three homogeneous coordinates define both a point and a line, the geometry of points is said to be dual to the geometry of lines in the projective plane. This is called theprinciple of duality.

Multivectors on projective 3-spaceP3

[edit]

Three-dimensional projective spaceP3 consists of all lines through the origin ofR4. Let the three-dimensional hyperplane,H:w = 1, be the affine component of projective space defined by the pointsx = (x,y,z, 1). The multivectorpqr defines a parallelepiped inR4 given by

pqr=|p2q2r2p3q3r3111|e2e3e4+|p1q1r1p3q3r3111|e1e3e4+|p1q1r1p2q2r2111|e1e2e4+|p1q1r1p2q2r2p3q3r3|e1e2e3.{\displaystyle \mathbf {p} \wedge \mathbf {q} \wedge \mathbf {r} ={\begin{vmatrix}p_{2}&q_{2}&r_{2}\\p_{3}&q_{3}&r_{3}\\1&1&1\end{vmatrix}}\mathbf {e} _{2}\wedge \mathbf {e} _{3}\wedge \mathbf {e} _{4}+{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{3}&q_{3}&r_{3}\\1&1&1\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{3}\wedge \mathbf {e} _{4}+{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{2}&q_{2}&r_{2}\\1&1&1\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{4}+{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{2}&q_{2}&r_{2}\\p_{3}&q_{3}&r_{3}\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}.}

Notice that substitution ofαp + βq + γr forp multiplies this multivector by a constant. Therefore, the components ofpqr are homogeneous coordinates for the 3-space through the origin ofR4.

A plane in the affine componentH:w = 1 is the set of pointsx = (x,y,z, 1) in the intersection of H with the 3-space defined bypqr. These points satisfyxpqr = 0, that is,

xpqr=(xe1+ye2+ze3+e4)pqr=0,{\displaystyle \mathbf {x} \wedge \mathbf {p} \wedge \mathbf {q} \wedge \mathbf {r} =(x\mathbf {e} _{1}+y\mathbf {e} _{2}+z\mathbf {e} _{3}+\mathbf {e} _{4})\wedge \mathbf {p} \wedge \mathbf {q} \wedge \mathbf {r} =0,}

which simplifies to the equation of a plane

λ:x|p2q2r2p3q3r3111|+y|p1q1r1p3q3r3111|+z|p1q1r1p2q2r2111|+|p1q1r1p2q2r2p3q3r3|=0.{\displaystyle \lambda :x{\begin{vmatrix}p_{2}&q_{2}&r_{2}\\p_{3}&q_{3}&r_{3}\\1&1&1\end{vmatrix}}+y{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{3}&q_{3}&r_{3}\\1&1&1\end{vmatrix}}+z{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{2}&q_{2}&r_{2}\\1&1&1\end{vmatrix}}+{\begin{vmatrix}p_{1}&q_{1}&r_{1}\\p_{2}&q_{2}&r_{2}\\p_{3}&q_{3}&r_{3}\end{vmatrix}}=0.}

This equation is satisfied by pointsx =αp +βq +γr for real values ofα,β andγ.

The four components ofpqr that define the planeλ are called theGrassmann coordinates of the plane. Because four homogeneous coordinates define both a point and a plane in projective space, the geometry of points is dual to the geometry of planes.

A line as the join of two points: In projective space the lineλ through two pointsp andq can be viewed as the intersection of the affine spaceH:w = 1 with the planex =αp +βq inR4. The multivectorpq provides homogeneous coordinates for the line

λ:pq=(p1e1+p2e2+p3e3+e4)(q1e1+q2e2+q3e3+e4),=|p1q111|e1e4+|p2q211|e2e4+|p3q311|e3e4+|p2q2p3q3|e2e3+|p3q3p1q1|e3e1+|p1q1p2q2|e1e2.{\displaystyle {\begin{aligned}\lambda :\mathbf {p} \wedge \mathbf {q} &=(p_{1}\mathbf {e} _{1}+p_{2}\mathbf {e} _{2}+p_{3}\mathbf {e} _{3}+\mathbf {e} _{4})\wedge (q_{1}\mathbf {e} _{1}+q_{2}\mathbf {e} _{2}+q_{3}\mathbf {e} _{3}+\mathbf {e} _{4}),\\&={\begin{vmatrix}p_{1}&q_{1}\\1&1\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{4}+{\begin{vmatrix}p_{2}&q_{2}\\1&1\end{vmatrix}}\mathbf {e} _{2}\wedge \mathbf {e} _{4}+{\begin{vmatrix}p_{3}&q_{3}\\1&1\end{vmatrix}}\mathbf {e} _{3}\wedge \mathbf {e} _{4}\\&+{\begin{vmatrix}p_{2}&q_{2}\\p_{3}&q_{3}\end{vmatrix}}\mathbf {e} _{2}\wedge \mathbf {e} _{3}+{\begin{vmatrix}p_{3}&q_{3}\\p_{1}&q_{1}\end{vmatrix}}\mathbf {e} _{3}\wedge \mathbf {e} _{1}+{\begin{vmatrix}p_{1}&q_{1}\\p_{2}&q_{2}\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{2}.\end{aligned}}}

These are known as thePlücker coordinates of the line, though they are also an example of Grassmann coordinates.

A line as the intersection of two planes: A lineμ in projective space can also be defined as the set of pointsx that form the intersection of two planesπ andρ defined by grade three multivectors, so the pointsx are the solutions to the linear equations

μ:xπ=0,xρ=0.{\displaystyle \mu :\mathbf {x} \wedge \pi =0,\mathbf {x} \wedge \rho =0.}

In order to obtain the Plucker coordinates of the lineμ, map the multivectorsπ andρ to their dual point coordinates using the right complement, denoted by an overline, as in[9]

e1=e2e3e4¯,e2=e3e1e4¯,e3=e1e2e4¯,e4=e1e2e3¯,{\displaystyle \mathbf {e} _{1}={\overline {\mathbf {e} _{2}\wedge \mathbf {e} _{3}\wedge \mathbf {e} _{4}}},\quad \mathbf {e} _{2}={\overline {\mathbf {e} _{3}\wedge \mathbf {e} _{1}\wedge \mathbf {e} _{4}}},\quad \mathbf {e} _{3}={\overline {\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{4}}},\quad \mathbf {e} _{4}={\overline {\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3}}},}

then

π¯=π1e1+π2e2+π3e3+π4e4,ρ¯=ρ1e1+ρ2e2+ρ3e3+ρ4e4.{\displaystyle {\overline {\pi }}=\pi _{1}\mathbf {e} _{1}+\pi _{2}\mathbf {e} _{2}+\pi _{3}\mathbf {e} _{3}+\pi _{4}\mathbf {e} _{4},\quad {\overline {\rho }}=\rho _{1}\mathbf {e} _{1}+\rho _{2}\mathbf {e} _{2}+\rho _{3}\mathbf {e} _{3}+\rho _{4}\mathbf {e} _{4}.}

So, the Plücker coordinates of the lineμ are given by

μ:π¯ρ¯_=|π1ρ1π4ρ4|e2e3+|π2ρ2π4ρ4|e3e1+|π3ρ3π4ρ4|e1e2+|π2ρ2π3ρ3|e1e4+|π3ρ3π1ρ1|e2e4+|π1ρ1π2ρ2|e3e4,{\displaystyle {\begin{aligned}\mu :{\underline {{\overline {\pi }}\wedge {\overline {\rho }}}}&={\begin{vmatrix}\pi _{1}&\rho _{1}\\\pi _{4}&\rho _{4}\end{vmatrix}}\mathbf {e} _{2}\wedge \mathbf {e} _{3}+{\begin{vmatrix}\pi _{2}&\rho _{2}\\\pi _{4}&\rho _{4}\end{vmatrix}}\mathbf {e} _{3}\wedge \mathbf {e} _{1}+{\begin{vmatrix}\pi _{3}&\rho _{3}\\\pi _{4}&\rho _{4}\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{2}\\&+{\begin{vmatrix}\pi _{2}&\rho _{2}\\\pi _{3}&\rho _{3}\end{vmatrix}}\mathbf {e} _{1}\wedge \mathbf {e} _{4}+{\begin{vmatrix}\pi _{3}&\rho _{3}\\\pi _{1}&\rho _{1}\end{vmatrix}}\mathbf {e} _{2}\wedge \mathbf {e} _{4}+{\begin{vmatrix}\pi _{1}&\rho _{1}\\\pi _{2}&\rho _{2}\end{vmatrix}}\mathbf {e} _{3}\wedge \mathbf {e} _{4},\end{aligned}}}

where the underline denotes the left complement. The left complement of the wedge product of right complements is called the antiwedge product, denoted by a downward pointing wedge, allowing us to writeμ=πρ.{\displaystyle \mu =\pi \vee \rho .}

Clifford product

[edit]

W. K. Clifford combined multivectors with theinner product defined on the vector space, in order to obtain a general construction for hypercomplex numbers that includes the usual complex numbers and Hamilton'squaternions.[10][11]

The Clifford product between two vectorsu andv is bilinear and associative like the exterior product, and has the additional property that the multivectoruv is coupled to the inner productuv by Clifford's relation,

uv+vu=2uv.{\displaystyle \mathbf {u} \mathbf {v} +\mathbf {v} \mathbf {u} =2\mathbf {u} \cdot \mathbf {v} .}

Clifford's relation retains the anticommuting property for vectors that are perpendicular. This can be seen from the mutually orthogonal unit vectorsei,i = 1, ...,n inRn: Clifford's relation yields

eiej+ejei=2eiej=δi,j,{\displaystyle \mathbf {e} _{i}\mathbf {e} _{j}+\mathbf {e} _{j}\mathbf {e} _{i}=2\mathbf {e} _{i}\cdot \mathbf {e} _{j}=\delta _{i,j},}

which shows that the basis vectors mutually anticommute,

eiej=ejei,ij=1,,n.{\displaystyle \mathbf {e} _{i}\mathbf {e} _{j}=-\mathbf {e} _{j}\mathbf {e} _{i},\quad i\neq j=1,\ldots ,n.}

In contrast to the exterior product, the Clifford product of a vector with itself is not zero. To see this, compute the product

eiei+eiei=2eiei=2,{\displaystyle \mathbf {e} _{i}\mathbf {e} _{i}+\mathbf {e} _{i}\mathbf {e} _{i}=2\mathbf {e} _{i}\cdot \mathbf {e} _{i}=2,}

which yields

eiei=1,i=1,,n.{\displaystyle \mathbf {e} _{i}\mathbf {e} _{i}=1,\quad i=1,\ldots ,n.}

The set of multivectors constructed using Clifford's product yields an associative algebra known as aClifford algebra. Inner products with different properties can be used to construct different Clifford algebras.[12][13]

Geometric algebra

[edit]
See also:Blade (geometry)

The termk-blade was used inClifford Algebra to Geometric Calculus (1984)[14]

Multivectors play a central role in the mathematical formulation of physics known as geometric algebra. According toDavid Hestenes,

[Non-scalar]k-vectors are sometimes calledk-blades or, merelyblades, to emphasize the fact that, in contrast to 0-vectors (scalars), they have "directional properties".[15]

In 2003 the termblade for a multivector that can be written as the exterior product of [a scalar and] a set of vectors was used by C. Doran and A. Lasenby. Here, by the statement "Any multivector can be expressed as the sum of blades", scalars are implicitly defined as 0-blades.[16]

Ingeometric algebra, a multivector is defined to be the sum of different-gradek-blades, such as the summation of ascalar, avector, and a 2-vector.[17] A sum of onlyk-grade components is called ak-vector,[18] or ahomogeneous multivector.[19]

The highest grade element in a space is called apseudoscalar.

If a given element is homogeneous of a gradek, then it is ak-vector, but not necessarily ak-blade. Such an element is ak-blade when it can be expressed as the exterior product ofk vectors. A geometric algebra generated by a four-dimensional vector space illustrates the point with an example: The sum of any two blades with one taken from the XY-plane and the other taken from the ZW-plane will form a 2-vector that is not a 2-blade. In a geometric algebra generated by a vector space of dimension 2 or 3, all sums of 2-blades may be written as a single 2-blade.

Examples

[edit]
Orientation defined by an ordered set of vectors.
Reversed orientation corresponds to negating the exterior product.
Geometric interpretation of graden elements in a real exterior algebra forn = 0 (signed point), 1 (directed line segment, or vector), 2 (oriented plane element), 3 (oriented volume). The exterior product ofn vectors can be visualized as anyn-dimensional shape (e.g.n-parallelotope,n-ellipsoid); with magnitude (hypervolume), andorientation defined by that on its(n − 1)-dimensional boundary and on which side the interior is.[20][21]

In the presence of avolume form (such as given aninner product and an orientation), pseudovectors and pseudoscalars can be identified with vectors and scalars, which is routine invector calculus, but without a volume form this cannot be done without making an arbitrary choice.

In thealgebra of physical space (the geometric algebra of Euclidean 3-space, used as a model of (3+1)-spacetime), a sum of a scalar and a vector is called aparavector, and represents a point in spacetime (the vector the space, the scalar the time).

Bivectors

[edit]
Main article:Bivector

Abivector is an element of theantisymmetrictensor product of atangent space with itself.

Ingeometric algebra, also, abivector is a grade 2 element (a 2-vector) resulting from thewedge product of two vectors, and so it is geometrically anoriented area, in the same way avector is an oriented line segment. Ifa andb are two vectors, the bivectorab has

Bivectors are connected topseudovectors, and are used to represent rotations in geometric algebra.

As bivectors are elements of a vector space Λ2V (whereV is a finite-dimensional vector space withdimV =n), it makes sense to define aninner product on this vector space as follows. First, write any elementF ∈ Λ2V in terms of a basis(eiej)1 ≤i <jn of Λ2V as

F=Fabeaeb(1a<bn),{\displaystyle F=F^{ab}\mathbf {e} _{a}\wedge \mathbf {e} _{b}\quad (1\leq a<b\leq n),}

where theEinstein summation convention is being used.

Now define a mapG : Λ2V × Λ2VR by insisting that

G(F,H):=GabcdFabHcd,{\displaystyle G(F,H):=G_{abcd}F^{ab}H^{cd},}

whereGabcd{\displaystyle G_{abcd}} are a set of numbers.

Applications

[edit]

Bivectors play many important roles in physics, for example, in theclassification of electromagnetic fields.

See also

[edit]

References

[edit]
  1. ^John Snygg (2012),A New Approach to Differential Geometry Using Clifford’s Geometric Algebra, Birkhäuser, p. 5 §2.12
  2. ^abcHarley Flanders (1989)[1963]Differential Forms with Applications to the Physical Sciences, § 2.1 The Space ofp-Vectors, pages 5–7,Dover Books
  3. ^Wendell Fleming (1977) [1965]Functions of Several Variables, section 7.5 Multivectors, page 295,ISBN 978-1-4684-9461-7
  4. ^Élie Cartan,The theory of spinors,p. 16, considers only homogeneous vectors, particularly simple ones, referring to them as "multivectors" (collectively) orp-vectors (specifically).
  5. ^William M Pezzaglia Jr. (1992)."Clifford algebra derivation of the characteristic hypersurfaces of Maxwell's equations". In Julian Ławrynowicz (ed.).Deformations of mathematical structures II. Springer. p. 131ff.ISBN 0-7923-2576-1.Hence in 3D we associate the alternate terms ofpseudovector forbivector, andpseudoscalar for the trivector
  6. ^Baylis (1994).Theoretical methods in the physical sciences: an introduction to problem solving using Maple V. Birkhäuser. p. 234, see footnote.ISBN 0-8176-3715-X.
  7. ^G. E. Shilov,Linear Algebra, (trans. R. A. Silverman), Dover Publications, 1977.
  8. ^W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 1, Cambridge Univ. Press, 1947
  9. ^Eric Lengyel (2024)Projective Geometric Algebra Illuminated, § 2.2 Complements, pages 44–46,ISBN 979-8-9853582-5-4.
  10. ^W. K. Clifford, "Preliminary sketch of bi-quaternions," Proc. London Math. Soc. Vol. 4 (1873) pp. 381–395
  11. ^W. K. Clifford,Mathematical Papers, (ed. R. Tucker), London: Macmillan, 1882.
  12. ^J. M. McCarthy,An Introduction to Theoretical Kinematics, pp. 62–5, MIT Press 1990.
  13. ^O. Bottema and B. Roth,Theoretical Kinematics, North Holland Publ. Co., 1979
  14. ^David Hestenes & Garret Sobczyk (1984)Clifford Algebra to Geometric Calculus, p. 4, D. ReidelISBN 90-277-1673-0
  15. ^David Hestenes (1999)[1986]New Foundations for Classical Mechanics, page 34,D. ReidelISBN 90-277-2090-8
  16. ^C. Doran and A. Lasenby (2003)Geometric Algebra for Physicists, page 87,Cambridge University PressISBN 9780511807497
  17. ^Marcos A. Rodrigues (2000)."§1.2 Geometric algebra: an outline".Invariants for pattern recognition and classification. World Scientific. p. 3ff.ISBN 981-02-4278-6.
  18. ^R Wareham, J Cameron &J Lasenby (2005)."Applications of conformal geometric algebra in computer vision and graphics". In Hongbo Li;Peter J. Olver; Gerald Sommer (eds.).Computer algebra and geometric algebra with applications. Springer. p. 330.ISBN 3-540-26296-2.
  19. ^Eduardo Bayro-Corrochano (2004)."Clifford geometric algebra: A promising framework for computer vision, robotics and learning". In Alberto Sanfeliu; José Francisco Martínez Trinidad; Jesús Ariel Carrasco Ochoa (eds.).Progress in pattern recognition, image analysis and applications. Springer. p. 25.ISBN 3-540-23527-2.
  20. ^R. Penrose (2007).The Road to Reality. Vintage books.ISBN 978-0-679-77631-4.
  21. ^J.A. Wheeler; C. Misner; K.S. Thorne (1973).Gravitation. W.H. Freeman & Co. p. 83.ISBN 0-7167-0344-0.
Basic concepts
Three dimensional Euclidean space
Matrices
Bilinear
Multilinear algebra
Vector space constructions
Numerical
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Multivector&oldid=1280502413"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp