Workable paste that hardens to bind building blocks
Mortar holding weathered bricks
Mortar is a workablepaste which hardens to bind building blocks such asstones,bricks, andconcrete masonry units, to fill and seal the irregular gaps between them, spread the weight of them evenly, and sometimes to add decorative colours or patterns tomasonry walls. In its broadest sense, mortar includespitch,asphalt, and soft clay, as those used between bricks, as well as cement mortar. The word "mortar" comes from theOld French wordmortier, "builder's mortar, plaster; bowl for mixing." (13c.).[1]
Cement mortar becomes hard when it cures, resulting in a rigidaggregate structure; however, the mortar functions as a weaker component than the building blocks and serves as the sacrificial element in the masonry, because mortar is easier and less expensive to repair than the building blocks.Bricklayers typically make mortars using a mixture ofsand, abinder, and water. The most common binder since the early 20th century isPortland cement, but the ancient binderlime (producinglime mortar) is still used in some specialty new construction. Lime, lime mortar, and gypsum in the form ofplaster of Paris are used particularly in the repair andrepointing of historic buildings and structures, so that the repair materials will be similar in performance and appearance to the original materials. Several types of cement mortars and additives exist.
The first mortars were made of mud andclay,[2] as demonstrated in the 10th millennium BC buildings ofJericho, and the 8th millennium BC ofGanj Dareh.[2]
Gypsum mortar, also called plaster of Paris, was used in the construction of many ancient structures. It is made from gypsum, which requires a lower firing temperature. It is therefore easier to make than lime mortar and sets up much faster, which may be a reason it was used as the typical mortar in ancient, brick arch and vault construction. Gypsum mortar is not as durable as other mortars in damp conditions.[4]
Gypsum cement that was "light grey and contained sand, clay, traces of calcium carbonate, and a high percentage of lime" was used in the construction of wells, drains, and on the exteriors of "important looking buildings." Bitumen mortar was also used at a lower-frequency, including in theGreat Bath at Mohenjo-daro.[5][6]
In early Egyptian pyramids, which were constructed during theOld Kingdom (~2600–2500 BC), the limestone blocks were bound by a mortar of mud and clay, or clay and sand.[7] In later Egyptian pyramids, the mortar was made ofgypsum, or lime.[8] Gypsum mortar was essentially a mixture ofplaster andsand and was quite soft.
Historically, building withconcrete and mortar next appeared inGreece. The excavation of the underground aqueduct of Megara revealed that a reservoir was coated with apozzolanic mortar 12 mm thick. This aqueduct dates back to c. 500 BC.[9] Pozzolanic mortar is a lime based mortar, but is made with an additive of volcanic ash that allows it to be hardened underwater; thus it is known as hydraulic cement. The Greeks obtained the volcanic ash from the Greek islandsThira andNisiros, or from the then Greek colony of Dicaearchia (Pozzuoli) near Naples, Italy. The Romans later improved the use and methods of making what became known as pozzolanic mortar and cement.[8] Even later, the Romans used a mortar without pozzolana using crushedterra cotta, introducingaluminum oxide andsilicon dioxide into the mix. This mortar was not as strong as pozzolanic mortar, but, because it was denser, it better resisted penetration by water.[10]
Hydraulic mortar was not available in ancient China, possibly due to a lack of volcanic ash. Around 500 CE, sticky rice soup was mixed withslaked lime to make an inorganic−organic compositesticky rice mortar that had more strength and water resistance than lime mortar.[11][12]
It is not understood how the art of making hydraulic mortar and cement, which was perfected and in such widespread use by both the Greeks and Romans, was then lost for almost two millennia. During theMiddle Ages when the Gothic cathedrals were being built, the only active ingredient in the mortar was lime. Since curedlime mortar can be degraded by contact with water, many structures suffered over the centuries from wind-blown rain.
Laying bricks with Portland cement mortarMortar mixed inside a 5 US gal (19 L) bucket using clean water and mortar from a bag.
Ordinary Portland cement mortar, commonly known as OPC mortar or just cement mortar, is created by mixing powderedordinary Portland cement,fine aggregate and water.
It was invented in 1794 by Joseph Aspdin and patented on 18 December 1824, largely as a result of efforts to develop stronger mortars. It was made popular during the late nineteenth century, and had by 1930 became more popular than lime mortar as construction material. The advantages of Portland cement is that it sets hard and quickly, allowing a faster pace of construction. Furthermore, fewer skilled workers are required in building a structure with Portland cement.
As a general rule, however, Portland cement should not be used for the repair orrepointing of older buildings built in lime mortar, which require the flexibility, softness and breathability of lime if they are to function correctly.[13][14]
In the United States and other countries, five standard types of mortar (available as dry pre-mixed products) are generally used for both new construction and repair. Strengths of mortar change based on the mix ratio for each type of mortar, which are specified under theASTM standards.These premixed mortar products are designated by one of the five letters, M, S, N, O, and K. Type M mortar is the strongest, and Type K the weakest. The mix ratio is always expressed by volume of.
Mortar type
Portland cement
Lime
Sand
Approximate strength (psi)
M
1
1⁄4
3+1⁄2
2500
S
1
1⁄2
4+1⁄2
1800
N
1
1
6
750
O
1
2
9
350
K
1
3
12
75
These type letters are taken from the alternate letters of the words "MaSoN wOrK".[15]
Polymer cement mortars (PCM) are the materials which are made by partially replacing the cement hydrate binders of conventional cement mortar with polymers. The polymeric admixtures includelatexes oremulsions, redispersible polymer powders, water-soluble polymers, liquidthermoset resins and monomers.[16] Although they increase cost of mortars when used as an additive, they enhance properties. Polymer mortar has low permeability that may be detrimental to moisture accumulation when used to repair a traditional brick, block or stone wall. It is mainly designed for repairing concrete structures. The use of recovered plastics in mortars is being researched and is gaining ground.[17] Depolymerizing PET to use as a polymeric binder to enhance mortars is actively being studied.[18][19][20]
The setting speed can be increased by using impure limestone in thekiln, to form ahydraulic lime that will set on contact with water. Such a lime must be stored as a dry powder. Alternatively, apozzolanic material such as calcined clay or brick dust may be added to the mortar mix. Addition of a pozzolanic material will make the mortar set reasonably quickly by reaction with the water.
It would be problematic to use Portland cement mortars to repair older buildings originally constructed using lime mortar. Lime mortar is softer than cement mortar, allowingbrickwork a certain degree of flexibility to adapt to shifting ground or other changing conditions. Cement mortar is harder and allows little flexibility. The contrast can cause brickwork to crack where the two mortars are present in a single wall.
Lime mortar is considered breathable in that it will allow moisture to freely move through and evaporate from the surface. In old buildings with walls that shift over time, cracks can be found which allow rain water into the structure. The lime mortar allows this moisture to escape throughevaporation and keeps the wall dry. Re−pointing or rendering an old wall with cement mortar stops the evaporation and can cause problems associated with moisture behind the cement.
Pozzolana is a fine, sandyvolcanic ash. It was originally discovered and dug atPozzuoli, nearbyMount Vesuvius in Italy, and was subsequently mined at other sites, too. The Romans learned that pozzolana added to lime mortar allowed the lime to set relatively quickly and even under water.Vitruvius, the Roman architect, spoke of four types of pozzolana. It is found in all the volcanic areas of Italy in various colours: black, white, grey and red. Pozzolana has since become a generic term for any siliceous and/or aluminous additive to slaked lime to create hydraulic cement.[21]
Finely ground and mixed with lime it is a hydraulic cement, like Portland cement, and makes a strong mortar that will also set under water.
The fact that the materials involved in the creation of pozzolana are found in abundance within certain territories make its use more common there, with areas inside ofCentral Europe as well as inside ofSouthern Europe being an example (significantly because of themany European volcanoes of note). It has, as such, been commonly associated with a variety of large structures constructed by theRoman Empire.
As the mortar hardens, the current atmosphere is encased in the mortar and thus provides a sample for analysis. Various factors affect the sample and raise the margin of error for the analysis.[22][23][24][25]Radiocarbon dating of mortar began as early as the 1960s, soon after the method was established (Delibrias and Labeyrie 1964; Stuiver and Smith 1965; Folk and Valastro 1976). The very first data were provided by van Strydonck et al. (1983), Heinemeier et al.(1997) and Ringbom and Remmer (1995). Methodological aspects were further developed by different groups (an international team headed byÅbo Akademi University, and teams from CIRCE, CIRCe, ETHZ, Poznań, RICH and Milano-Bicocca laboratory. To evaluate the different anthropogenic carbon extraction methods for radiocarbon dating as well as to compare the different dating methods, i.e. radiocarbon and OSL, the first intercomparison study (MODIS) was set up and published in 2017.[26][27]
^O. P. Jaggi (1969),History of science and technology in India, Volume 1, Atma Ram, 1969,... In some of the important-looking buildings, gypsum cement of a light gray colour was used on the outside to prevent the mud mortar from crumbling down. In a very well constructed drain of the Intermediate period, the mortar which was used contains a high percentage of lime instead of gypsum. Bitumen was found to have been used only at one place in Mohenjo-daro. This was in the construction of the great bath ...
^Abdur Rahman (1999),History of Indian science, technology, and culture, Oxford University Press, 1999,ISBN978-0-19-564652-8,... Gypsum cement was found to have been used in the construction of a well in Mohenjo-daro. The cement was light grey and contained sand, clay, traces of calcium carbonate, and a high percentage of lime ...
^Yang Fuwei, Zhang Bingjian, Ma Qinglin (2010). "Study of Sticky Rice−Lime Mortar Technology for the Restoration of Historical Masonry Construction".Accounts of Chemical Research.43 (6):936–944.doi:10.1021/ar9001944.PMID20455571.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Masonry: the best of Fine homebuilding.. Newtown, CT: Taunton Press, 1997. Print. 113.
^Folk RL, Valastro S (1979).Dating of lime mortar by 14C (Berger R, Suess H. ed.). Proceedings of the Ninth International Conference: Berkeley: University of California Press. pp. 721–730.
^Hayen R, Van Strydonck M, Fontaine L, Boudin M, Lindroos A, Heinemeier J, Ringbom A, Michalska D, Hajdas I, Hueglin S, Marzaioli F, Terrasi F, Passariello I, Capano M, Maspero F, Panzeri L, Galli A, Artioli G, Addis A, Secco M, Boaretto E, Moreau C, Guibert P, Urbanova P, Czernik J, Goslar T, Caroselli M (2017). "Mortar dating methodology: intercomparison of available methods".Radiocarbon.59 (6).
^Hayen R, Van Strydonck M, Boaretto E, Lindroos A, Heinemeier J, Ringbom Å, Hueglin S, Michalska D, Hajdas I, Marzaoili F, Maspero F, Galli A, Artioli G, Moreau Ch, Guibert P, Caroselli M (2016).Absolute dating of mortars – integrating chemical and physical techniques to characterize and select the mortar samples. Proceedings of the 4th Historic Mortars Conference - HMC2016. pp. 656–667.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Hayen R, Van Strydonck M, Fontaine L, Boudin M, Lindroos A, Heinemeier J, Ringbom A, Michalska D, Hajdas I, Hueglin S, Marzaioli F, Panzeri L, Galli A, Artioli G, Addis A, Secco M, Boaretto E, Moreau C, Guibert P, Urbanova P, Czernik J, Goslar T, Caroselli M (2017). "Mortar dating methodology: intercomparison of available methods".Radiocarbon.59 (6).