Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Minkowski plane

From Wikipedia, the free encyclopedia
Type of Benz planes
This article is about the Benz plane. Not to be confused withMinkowski space.

In mathematics, aMinkowski plane (named afterHermann Minkowski) is one of theBenz planes (the others beingMöbius plane andLaguerre plane).

Classical real Minkowski plane

[edit]
classical Minkowski plane: 2d/3d-model

Applying thepseudo-euclidean distanced(P1,P2)=(x1x2)2(y1y2)2{\displaystyle d(P_{1},P_{2})=(x'_{1}-x'_{2})^{2}-(y'_{1}-y'_{2})^{2}} on two pointsPi=(xi,yi){\displaystyle P_{i}=(x'_{i},y'_{i})} (instead of the euclidean distance) we get the geometry ofhyperbolas, because a pseudo-euclidean circle{PR2d(P,M)=r}{\displaystyle \{P\in \mathbb {R} ^{2}\mid d(P,M)=r\}} is ahyperbola with midpointM{\displaystyle M}.

By a transformation of coordinatesxi=xi+yi{\displaystyle x_{i}=x'_{i}+y'_{i}},yi=xiyi{\displaystyle y_{i}=x'_{i}-y'_{i}}, the pseudo-euclidean distance can be rewritten asd(P1,P2)=(x1x2)(y1y2){\displaystyle d(P_{1},P_{2})=(x_{1}-x_{2})(y_{1}-y_{2})}. The hyperbolas then haveasymptotes parallel to the non-primed coordinate axes.

The following completion (see Möbius and Laguerre planes)homogenizes the geometry of hyperbolas:

Theincidence structure(P,Z,){\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} is called theclassical real Minkowski plane.

The set of points consists ofR2{\displaystyle \mathbb {R} ^{2}}, two copies ofR{\displaystyle \mathbb {R} } and the point(,){\displaystyle (\infty ,\infty )}.

Any liney=ax+b,a0{\displaystyle y=ax+b,a\neq 0} is completed by point(,){\displaystyle (\infty ,\infty )}, any hyperbolay=axb+c,a0{\displaystyle y={\frac {a}{x-b}}+c,a\neq 0} by the two points(b,),(,c){\displaystyle (b,\infty ),(\infty ,c)} (see figure).

Two points(x1,y1)(x2,y2){\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})} can not be connected by a cycle if and only ifx1=x2{\displaystyle x_{1}=x_{2}} ory1=y2{\displaystyle y_{1}=y_{2}}.

We define:Two pointsP1{\displaystyle P_{1}},P2{\displaystyle P_{2}} are(+)-parallel (P1+P2{\displaystyle P_{1}\parallel _{+}P_{2}}) ifx1=x2{\displaystyle x_{1}=x_{2}} and(−)-parallel (P1P2{\displaystyle P_{1}\parallel _{-}P_{2}}) ify1=y2{\displaystyle y_{1}=y_{2}}.
Both these relations areequivalence relations on the set of points.

Two pointsP1,P2{\displaystyle P_{1},P_{2}} are calledparallel (P1P2{\displaystyle P_{1}\parallel P_{2}}) ifP1+P2{\displaystyle P_{1}\parallel _{+}P_{2}} orP1P2{\displaystyle P_{1}\parallel _{-}P_{2}}.

From the definition above we find:

Lemma:

Like the classical Möbius and Laguerre planes Minkowski planes can be described as the geometry of plane sections of a suitable quadric. But in this case the quadric lives inprojective 3-space: The classical real Minkowski plane is isomorphic to the geometry of plane sections of ahyperboloid of one sheet (not degenerated quadric of index 2).

Axioms of a Minkowski plane

[edit]

Let(P,Z;+,,){\displaystyle \left({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in \right)} be an incidence structure with the setP{\displaystyle {\mathcal {P}}} of points, the setZ{\displaystyle {\mathcal {Z}}} of cycles and two equivalence relations+{\displaystyle \parallel _{+}} ((+)-parallel) and{\displaystyle \parallel _{-}} ((−)-parallel) on setP{\displaystyle {\mathcal {P}}}. ForPP{\displaystyle P\in {\mathcal {P}}} we define:P¯+:={QPQ+P}{\displaystyle {\overline {P}}_{+}:=\left\{Q\in {\mathcal {P}}\mid Q\parallel _{+}P\right\}} andP¯:={QPQP}{\displaystyle {\overline {P}}_{-}:=\left\{Q\in {\mathcal {P}}\mid Q\parallel _{-}P\right\}}.An equivalence classP¯+{\displaystyle {\overline {P}}_{+}} orP¯{\displaystyle {\overline {P}}_{-}} is called(+)-generator and(−)-generator, respectively. (For the space model of the classical Minkowski plane a generator is a line on the hyperboloid.)
Two pointsA,B{\displaystyle A,B} are calledparallel (AB{\displaystyle A\parallel B}) ifA+B{\displaystyle A\parallel _{+}B} orAB{\displaystyle A\parallel _{-}B}.

An incidence structureM:=(P,Z;+,,){\displaystyle {\mathfrak {M}}:=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )} is calledMinkowski plane if the following axioms hold:

Minkowski-axioms-c1-c2
Minkowski-axioms-c3-c4

For investigations the following statements on parallel classes (equivalent to C1, C2 respectively) are advantageous.

First consequences of the axioms are

LemmaFor a Minkowski planeM{\displaystyle {\mathfrak {M}}} the following is true

  1. Any point is contained in at least one cycle.
  2. Any generator contains at least 3 points.
  3. Two points can be connected by a cycle if and only if they are non parallel.

Analogously to Möbius and Laguerre planes we get the connection to the lineargeometry via the residues.

For a Minkowski planeM=(P,Z;+,,){\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )} andPP{\displaystyle P\in {\mathcal {P}}} we define the local structureAP:=(PP¯,{z{P¯}PzZ}{EP¯EE{P¯+,P¯}},){\displaystyle {\mathfrak {A}}_{P}:=({\mathcal {P}}\setminus {\overline {P}},\{z\setminus \{{\overline {P}}\}\mid P\in z\in {\mathcal {Z}}\}\cup \{E\setminus {\overline {P}}\mid E\in {\mathcal {E}}\setminus \{{\overline {P}}_{+},{\overline {P}}_{-}\}\},\in )}and call it theresidue at point P.

For the classical Minkowski planeA(,){\displaystyle {\mathfrak {A}}_{(\infty ,\infty )}} is the real affine planeR2{\displaystyle \mathbb {R} ^{2}}.

An immediate consequence of axioms C1 to C4 and C1′, C2′ are the following two theorems.

Theorem For a Minkowski planeM=(P,Z;+,,){\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel ,\in )} any residue is an affine plane.

Theorem Let beM=(P,Z;+,,){\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )} an incidence structure with two equivalence relations+{\displaystyle \parallel _{+}} and{\displaystyle \parallel _{-}} on the setP{\displaystyle {\mathcal {P}}} of points (see above).

Then,M{\displaystyle {\mathfrak {M}}} is a Minkowski plane if and only if for any pointP{\displaystyle P} the residueAP{\displaystyle {\mathfrak {A}}_{P}} is an affine plane.

Minimal model

[edit]
Minkowski plane: minimal model

Theminimal model of a Minkowski plane can be established over the setK¯:={0,1,}{\displaystyle {\overline {K}}:=\{0,1,\infty \}} of three elements:P:=K¯2{\displaystyle {\mathcal {P}}:={\overline {K}}^{2}}Z:={{(a1,b1),(a2,b2),(a3,b3)}{a1,a2,a3}={b1,b2,b3}=K¯}={{(0,0),(1,1),(,)},{(0,0),(1,),(,1)},{(0,1),(1,0),(,)},{(0,1),(1,),(,0)},{(0,),(1,1),(,0)},{(0,),(1,0),(,1)}}{\displaystyle {\begin{aligned}{\mathcal {Z}}:\!&=\left\{\{(a_{1},b_{1}),(a_{2},b_{2}),(a_{3},b_{3})\}\mid \{a_{1},a_{2},a_{3}\}=\{b_{1},b_{2},b_{3}\}={\overline {K}}\right\}\\&=\{\{(0,0),(1,1),(\infty ,\infty )\},\;\{(0,0),(1,\infty ),(\infty ,1)\},\\&\qquad \{(0,1),(1,0),(\infty ,\infty )\},\;\{(0,1),(1,\infty ),(\infty ,0)\},\\&\qquad \{(0,\infty ),(1,1),(\infty ,0)\},\;\{(0,\infty ),(1,0),(\infty ,1)\}\}\end{aligned}}}

Parallel points:

Hence|P|=9{\displaystyle \left|{\mathcal {P}}\right|=9} and|Z|=6{\displaystyle \left|{\mathcal {Z}}\right|=6}.

Finite Minkowski-planes

[edit]

For finite Minkowski-planes we get from C1′, C2′:

LemmaLet beM=(P,Z;+,,){\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )} a finite Minkowski plane, i.e.|P|<{\displaystyle \left|{\mathcal {P}}\right|<\infty }. For any pair of cyclesz1,z2{\displaystyle z_{1},z_{2}} and any pair of generatorse1,e2{\displaystyle e_{1},e_{2}} we have:|z1|=|z2|=|e1|=|e2|{\displaystyle \left|z_{1}\right|=\left|z_{2}\right|=\left|e_{1}\right|=\left|e_{2}\right|}.

This gives rise of thedefinition:
For a finite Minkowski planeM{\displaystyle {\mathfrak {M}}} and a cyclez{\displaystyle z} ofM{\displaystyle {\mathfrak {M}}} we call the integern=|z|1{\displaystyle n=\left|z\right|-1} theorder ofM{\displaystyle {\mathfrak {M}}}.

Simple combinatorial considerations yield

LemmaFor a finite Minkowski planeM=(P,Z;+,,){\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )} the following is true:

  1. Any residue (affine plane) has ordern{\displaystyle n}.
  2. |P|=(n+1)2{\displaystyle \left|{\mathcal {P}}\right|=(n+1)^{2}},
  3. |Z|=(n+1)n(n1){\displaystyle \left|{\mathcal {Z}}\right|=(n+1)n(n-1)}.

Miquelian Minkowski planes

[edit]

We get the most important examples of Minkowski planes by generalizing the classical real model: Just replaceR{\displaystyle \mathbb {R} } by an arbitraryfieldK{\displaystyle K} then we getin any case a Minkowski planeM(K)=(P,Z;+,,){\displaystyle {\mathfrak {M}}(K)=({\mathcal {P}},{\mathcal {Z}};\parallel _{+},\parallel _{-},\in )}.

Analogously to Möbius and Laguerre planes the Theorem of Miquel is a characteristic property of a Minkowski planeM(K){\displaystyle {\mathfrak {M}}(K)}.

Theorem of Miquel

Theorem (Miquel): For the Minkowski planeM(K){\displaystyle {\mathfrak {M}}(K)} the following is true:

If for any 8 pairwise not parallel pointsP1,...,P8{\displaystyle P_{1},...,P_{8}} which can be assigned to the vertices of a cube such that the points in 5 faces correspond to concyclical quadruples, then the sixth quadruple of points is concyclical, too.

(For a better overview in the figure there are circles drawn instead of hyperbolas.)

Theorem (Chen): Only a Minkowski planeM(K){\displaystyle {\mathfrak {M}}(K)} satisfies the theorem of Miquel.

Because of the last theoremM(K){\displaystyle {\mathfrak {M}}(K)} is called amiquelian Minkowski plane.

Remark: Theminimal model of a Minkowski plane is miquelian.

It is isomorphic to the Minkowski planeM(K){\displaystyle {\mathfrak {M}}(K)} withK=GF(2){\displaystyle K=\operatorname {GF} (2)} (field{0,1}{\displaystyle \{0,1\}}).

An astonishing result is

Theorem (Heise): Any Minkowski plane ofeven order is miquelian.

Remark: A suitablestereographic projection shows:M(K){\displaystyle {\mathfrak {M}}(K)} is isomorphicto the geometry of the plane sections on a hyperboloid of one sheet (quadric of index 2) in projective 3-space over fieldK{\displaystyle K}.

Remark: There are a lot of Minkowski planes that arenot miquelian (s. weblink below). But there are no "ovoidal Minkowski" planes, in difference to Möbius and Laguerre planes. Because anyquadratic set of index 2 in projective 3-space is a quadric (seequadratic set).

See also

[edit]

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Minkowski_plane&oldid=1207322481"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp