Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Mean radius (astronomy)

From Wikipedia, the free encyclopedia
A measure for the size of planets and other Solar System objects
For other uses, seeMean radius."Mean diameter (astronomy)" redirects here. For other uses, seeDiameter (disambiguation)."Dimensions (astronomy)" redirects here. For other uses, seeDimension (disambiguation).
A sphere (top), rotational ellipsoid (left) and tri-axial ellipsoid (right)

Themean radius inastronomy is a measure for the size ofplanets andsmall Solar System bodies. Alternatively, the closely relatedmean diameter (D{\displaystyle D}), which is twice the mean radius, is also used. For a non-spherical object, the meanradius (denotedR{\displaystyle R} orr{\displaystyle r}) is defined as the radius of thesphere that would enclose the samevolume as the object.[1] In the case of a sphere, the mean radius is equal to the radius.

For any irregularly shaped rigid body, there is a uniqueellipsoid with the same volume andmoments of inertia.[2] In astronomy, thedimensions of an object are defined as theprincipal axes of that special ellipsoid.[3]

Calculation

[edit]
Main article:Moment of inertia § Principal axes

The dimensions of aminor planet can be uni-, bi- or tri-axial, depending on what kind of ellipsoid is used to model it. Given the dimensions of an irregularly shaped object, one can calculate its mean radius:

Anoblate spheroid, bi-axial, orrotational ellipsoid with axesa{\displaystyle a} andc{\displaystyle c} has a mean radius ofR=(a2c)1/3{\displaystyle R=(a^{2}\cdot c)^{1/3}}.[4]

Atri-axial ellipsoid with axesa{\displaystyle a},b{\displaystyle b} andc{\displaystyle c} has mean radiusR=(abc)1/3{\displaystyle R=(a\cdot b\cdot c)^{1/3}}.[1] The formula for a rotational ellipsoid is the special case wherea=b{\displaystyle a=b}.

For a sphere, which is uni-axial (a=b=c{\displaystyle a=b=c}), this simplifies toR=a{\displaystyle R=a}.

Planets anddwarf planets are nearly spherical if they are not rotating. A rotating object that is massive enough to be inhydrostatic equilibrium will be close in shape to an ellipsoid, with the details depending on the rate of the rotation. At moderate rates, it will assume the form of either a bi-axial (Maclaurin) or tri-axial (Jacobi) ellipsoid. At faster rotations, non-ellipsoidal shapes can be expected, but these are not stable.[5]

Examples

[edit]

See also

[edit]

References

[edit]
  1. ^abLeconte, J.; Lai, D.; Chabrier, G. (2011)."Distorted, nonspherical transiting planets: impact on the transit depth and on the radius determination"(PDF).Astronomy & Astrophysics.528 (A41): 9.arXiv:1101.2813.Bibcode:2011A&A...528A..41L.doi:10.1051/0004-6361/201015811.
  2. ^Milman, V. D.; Pajor, A. (1987–88)."Isotropic position and inertia ellipsoids and zonoids of the unit ball and normed n-dimensional Space"(PDF).Geometric Aspects of Functional Analysis: Israel Seminar (GAFA). Berlin, Heidelberg:Springer:65–66.
  3. ^Petit, A.; Souchay, J.; Lhotka, C. (2014)."High precision model of precession and nutation of the asteroids (1) Ceres, (4) Vesta, (433) Eros, (2867) Steins, and (25143) Itokawa"(PDF).Astronomy & Astrophysics.565 (A79): 3.Bibcode:2014A&A...565A..79P.doi:10.1051/0004-6361/201322905.
  4. ^abChambat, F.; Valette, B. (2001)."Mean radius, mass, and inertia for reference Earth models"(PDF).Physics of the Earth and Planetary Interiors.124 (3–4): 4.Bibcode:2001PEPI..124..237C.doi:10.1016/S0031-9201(01)00200-X.
  5. ^Lyttleton, R. (1953).The Stability of Rotating Liquid Masses.Cambridge University Press.ISBN 9781107615588.{{cite book}}:ISBN / Date incompatibility (help)
  6. ^Ridpath, I. (2012).A Dictionary of Astronomy.Oxford University Press. p. 115.ISBN 978-0-19-960905-5.
  7. ^Dunham, E. T.; Desch, S. J.; Probst, L. (April 2019)."Haumea's Shape, Composition, and Internal Structure".The Astrophysical Journal.877 (1): 11.arXiv:1904.00522.Bibcode:2019ApJ...877...41D.doi:10.3847/1538-4357/ab13b3.S2CID 90262114.
  8. ^Rabinowitz, D. L.; Barkume, K.; Brown, M. E.; Roe, H.; Schwartz, M.; Tourtellotte, S.; Trujillo, C. (2006). "Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-Sized Object in the Kuiper Belt".Astrophysical Journal.639 (2):1238–1251.arXiv:astro-ph/0509401.Bibcode:2006ApJ...639.1238R.doi:10.1086/499575.S2CID 11484750.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mean_radius_(astronomy)&oldid=1255571177"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp