Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lithium bis(trimethylsilyl)amide

From Wikipedia, the free encyclopedia
Chemical compound
Lithium bis(trimethylsilyl)amide
Monomer (does not exist)
Cyclic trimer
Names
Preferred IUPAC name
Lithium 1,1,1-trimethyl-N-(trimethylsilyl)silanaminide
Other names
Lithium hexamethyldisilazide
Hexamethyldisilazane lithium salt
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.021.569Edit this at Wikidata
UNII
  • InChI=1S/C6H18NSi2.Li/c1-8(2,3)7-9(4,5)6;/h1-6H3;/q-1;+1
  • ionic monomer: C[Si](C)(C)[N-][Si](C)(C)C.[Li+]
  • cyclic trimer: C[Si](C)(C)[N+]0([Si](C)(C)C)[Li-][N+]([Si](C)(C)C)([Si](C)(C)C)[Li-][N+]([Si](C)(C)C)([Si](C)(C)C)[Li-]0
Properties
LiN(Si(CH3)3)2
Molar mass167.33 g·mol−1
AppearanceWhite solid
Density0.86 g/cm3 at 25 °C
Melting point71 to 72 °C (160 to 162 °F; 344 to 345 K)
Boiling point80 to 84 °C (176 to 183 °F; 353 to 357 K) (0.001 mm Hg)
decomposes
SolubilityMost aprotic solvents
THF,hexane,toluene
Acidity (pKa)26
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
flammable, corrosive
Related compounds
Related compounds
Sodium bis(trimethylsilyl)amide
Potassium bis(trimethylsilyl)amide
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Lithium bis(trimethylsilyl)amide is a lithiatedorganosilicon compound with the formulaLiN(Si(CH3)3)2. It is commonly abbreviated asLiHMDS orLi(HMDS) (lithiumhexamethyldisilazide - a reference to itsconjugate acidHMDS) and is primarily used as a strongnon-nucleophilic base and as aligand. Like many lithium reagents, it has a tendency to aggregate and will form acyclictrimer in the absence of coordinating species.

Preparation

[edit]

LiHMDS is commercially available, but it can also be prepared by the deprotonation ofbis(trimethylsilyl)amine withn-butyllithium.[1] This reaction can be performedin situ.[2]

HN(Si(CH3)3)2 + C4H9Li → LiN(Si(CH3)3)2 + C4H10

Once formed, the compound can be purified bysublimation ordistillation.

Reactions and applications

[edit]

As a base

[edit]

LiHMDS is often used in organic chemistry as a strongnon-nucleophilic base.[3] Its conjugate acid has apKa of ~26,[4] making it is less basic than other lithium bases, such asLDA (pKa of conjugate acid ~36). It is relatively moresterically hindered and hence lessnucleophilic than other lithium bases. It can be used to form variousorganolithium compounds, includingacetylides[3] or lithiumenolates.[2]

where Me =CH3. As such, it finds use in a range of coupling reactions, particularly carbon-carbon bond forming reactions such as theFráter–Seebach alkylation and mixedClaisen condensations.

An alternative synthesis oftetrasulfur tetranitride entails the use ofS(N(Si(CH3)3)2)2 as a precursor with pre-formed S–N bonds.S(N(Si(CH3)3)2)2 is prepared by the reaction of lithium bis(trimethylsilyl)amide andsulfur dichloride (SCl2).

2 LiN(Si(CH3)3)2 + SCl2 → S(N(Si(CH3)3)2)2 + 2 LiCl

TheS(N(Si(CH3)3)2)2 reacts with the combination ofSCl2 andsulfuryl chloride (SO2Cl2) to formS4N4,trimethylsilyl chloride, andsulfur dioxide:[5]

2 S(N(Si(CH3)3)2)2 + 2 SCl2 + 2 SO2Cl2 → S4N4 + 8 (CH3)3SiCl + 2 SO2

As a ligand

[edit]

Li(HMDS) can react with a wide range ofmetal halides, by asalt metathesis reaction, to givemetal bis(trimethylsilyl)amides.

MXn +n Li(HMDS) → M(HMDS)n +n LiX

where X = Cl, Br, I and sometimes F

Metal bis(trimethylsilyl)amide complexes are lipophilic due to the ligand and hence are soluble in a range ofnonpolar organic solvents, this often makes them more reactive than the corresponding metal halides, which can be difficult to solubilise. Thesteric bulk of the ligands causes their complexes to be discrete and monomeric; further increasing their reactivity. Having a built-in base, these compounds conveniently react with protic ligand precursors to give other metal complexes and hence are important precursors to more complexcoordination compounds.[6]

Niche uses

[edit]

LiHMDS is volatile and has been discussed for use foratomic layer deposition of lithium compounds.[7]

Structure

[edit]

Like manyorganolithium reagents, lithium bis(trimethylsilyl)amide can form aggregates in solution. The extent of aggregation depends on the solvent. In coordinating solvents, such asethers[8] andamines,[9] themonomer anddimer are prevalent. In the monomeric and dimeric state, one or two solvent molecules bind to lithium centers. With ammonia as donor base lithium bis(trimethylsilyl)amide forms a trisolvated monomer that is stabilized by intermolecular hydrogen bonds.[10][11] In noncoordinating solvents, such asaromatics orpentane, the complexoligomers predominate, including the trimer.[9] In the solid state structure is trimeric.[12]


LiHMDS adduct withTMEDA

THF solvated dimer:[(LiHMDS)2(THF)2]

Trimer, solvent free:[(LiHMDS)3]

See also

[edit]

References

[edit]
  1. ^Amonoo-Neizer, E. H.; Shaw, R. A.; Skovlin, D. O.; Smith, B. C. (1966). "Lithium Bis(trimethylsilyl)amide and Tris(trimethylsilyl)amine".Inorganic Syntheses. Vol. 8. pp. 19–22.doi:10.1002/9780470132395.ch6.ISBN 978-0-470-13239-5.{{cite book}}:|journal= ignored (help)
  2. ^abDanheiser, R. L.; Miller, R. F.; Brisbois, R. G. (1990)."Detrifluoroacetylative Diazo Group Transfer: (E)-1-Diazo-4-phenyl-3-buten-2-one".Organic Syntheses.73: 134;Collected Volumes, vol. 9, p. 197.
  3. ^abWu, George; Huang, Mingsheng (July 2006). "Organolithium Reagents in Pharmaceutical Asymmetric Processes".Chemical Reviews.106 (7):2596–2616.doi:10.1021/cr040694k.PMID 16836294.
  4. ^Fraser, Robert R.; Mansour, Tarek S.; Savard, Sylvain (August 1985). "Acidity measurements on pyridines in tetrahydrofuran using lithiated silylamines".The Journal of Organic Chemistry.50 (17):3232–3234.doi:10.1021/jo00217a050.
  5. ^Maaninen, A.; Shvari, J.; Laitinen, R. S.; Chivers, T (2002). "Compounds of General Interest". In Coucouvanis, Dimitri (ed.).Inorganic Syntheses. Vol. 33. New York: John Wiley & Sons, Inc. pp. 196–199.doi:10.1002/0471224502.ch4.ISBN 9780471208259.
  6. ^Michael Lappert, Andrey Protchenko,Philip Power, Alexandra Seeber (2009).Metal Amide Chemistry. Weinheim: Wiley-VCH.doi:10.1002/9780470740385.ISBN 978-0-470-72184-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^Hämäläinen, Jani; Holopainen, Jani; Munnik, Frans; Hatanpää, Timo; Heikkilä, Mikko; Ritala, Mikko; Leskelä, Markku (2012). "Lithium Phosphate Thin Films Grown by Atomic Layer Deposition".Journal of the Electrochemical Society.159 (3):A259 –A263.doi:10.1149/2.052203jes.
  8. ^Lucht, Brett L.; Collum, David B. (1995). "Ethereal Solvation of Lithium Hexamethyldisilazide: Unexpected Relationships of Solvation Number, Solvation Energy, and Aggregation State".Journal of the American Chemical Society.117 (39):9863–9874.Bibcode:1995JAChS.117.9863L.doi:10.1021/ja00144a012.
  9. ^abLucht, Brett L.; Collum, David B. (1996). "Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)".Journal of the American Chemical Society.118 (9):2217–2225.Bibcode:1996JAChS.118.2217L.doi:10.1021/ja953029p.
  10. ^Neufeld, R.; Michel, R.; Herbst-Irmer, R.; Schöne, R.; Stalke, D. (2016). "Introducing a Hydrogen-Bond Donor into a Weakly Nucleophilic Brønsted Base: Alkali Metal Hexamethyldisilazides (MHMDS, M = Li, Na, K, Rb and Cs) with Ammonia".Chem. Eur. J.22 (35):12340–12346.doi:10.1002/chem.201600833.PMID 27457218.
  11. ^Neufeld, R.:DOSY External Calibration Curve Molecular Weight Determination as a Valuable Methodology in Characterizing Reactive Intermediates in Solution. In:eDiss, Georg-August-Universität Göttingen. 2016.
  12. ^Rogers, Robin D.; Atwood, Jerry L.; Grüning, Rainer (1978). "The crystal structure ofN-lithiohexamethyldisilazane, [LiN(SiMe3)2]3".J. Organomet. Chem.157 (2):229–237.doi:10.1016/S0022-328X(00)92291-5.
Inorganic (list)
Organic (soaps)
Minerals
Hypothetical
Other Li-related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithium_bis(trimethylsilyl)amide&oldid=1264181977"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp