Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of superconductors

From Wikipedia, the free encyclopedia

This article containsdynamic lists that may never be able to satisfy particular standards for completeness. You can help byadding missing items withreliable sources.

The table below shows some of the parameters of commonsuperconductors. X:Y means material X doped with element Y,TC is the highest reported transition temperature inkelvins andHC is acritical magnetic field intesla. "BCS" means whether or not the superconductivity is explained within theBCS theory.

List

[edit]
SubstanceClassTC (K)HC (T)TypeBCSReferences
AlElement1.200.01Iyes[1][2][3]
BiElement5.3×10−45.2×10−6Ino[note 1][4]
CdElement0.520.0028Iyes[2][3]
Diamond:BElement11.44IIyes[5][6][7]
GaElement1.0830.0058Iyes[2][3][8]
HfElement0.165Iyes[2]
α-HgElement4.150.04Iyes[2][3]
β-HgElement3.950.04Iyes[2][3]
InElement3.40.03Iyes[2][3]
IrElement0.140.0016Iyes[2][8]
α-LaElement4.9Iyes[2]
β-LaElement6.3Iyes[2]
LiElement4×10−4I[9]
MoElement0.920.0096Iyes[2][8]
NbElement9.260.82IIyes[2][3]
OsElement0.650.007Iyes[2]
PaElement1.4Iyes[10]
PbElement7.190.08Iyes[2][3]
ReElement2.40.03Iyes[2][3][11]
RhElement3.25×10−44.9×10−6I[12]
RuElement0.490.005Iyes[2][3]
Si:BElement0.40.4IIyes[13]
SnElement3.720.03Iyes[2][3]
TaElement4.480.09Iyes[2][3]
TcElement7.46–11.20.04IIyes[2][3]
α-ThElement1.370.013Iyes[2][3]
TiElement0.390.01Iyes[2][3]
TlElement2.390.02Iyes[2][3]
α-UElement0.68Iyes[2][10]
β-UElement1.8Iyes[10]
VElement5.031IIyes[2][3]
α-WElement0.0150.00012Iyes[8][10][14]
β-WElement1–4[14]
YbElement1.4 (>86 GPa)no[15]
ZnElement0.8550.005Iyes[2][3]
ZrElement0.550.014Iyes[2][3]
Ba8Si46Clathrate8.070.008IIyes[16]
CaH6Clathrate215 (172 GPa)[17][18]
C6CaCompound11.50.95II[19]
C6Li3Ca2Compound11.15II[19]
C8KCompound0.14II[19]
C8KHgCompound1.4II[19]
C6KCompound1.5II[20]
C3KCompound3.0II[20]
C3LiCompound<0.35II[20]
C2LiCompound1.9II[20]
C3NaCompound2.3–3.8II[20]
C2NaCompound5.0II[20]
C8RbCompound0.025II[19]
C6SrCompound1.65II[19]
C6YbCompound6.5II[19]
Sr2RuO4Compound0.93II[21]
C60Cs2RbCompound33IIyes[22]
C60K3Compound19.80.013IIyes[16][23]
C60RbXCompound28IIyes[24]
C60Cs3Compound38
FeB4Compound2.9II[25]
InNCompound3IIyes[26]
In2O3Compound3.3~3IIyes[27]
LaB6Compound0.45yes[28]
MgB2Compound3974IIyes[29]
Nb3AlCompound18IIyes[2]
NbC1-xNxCompound17.812IIyes[30][31]
Nb3GeCompound23.237IIyes[32]
NbOCompound1.38IIyes[33]
NbNCompound16IIyes[2]
Nb3SnCompound18.330IIyes[34]
NbTiCompound1015IIyes[2]
SiC:BCompound1.40.008Iyes[35]
SiC:AlCompound1.50.04IIyes[35]
TiNCompound5.65IIyes[36][37][38]
V3SiCompound17[39]
YB6Compound8.4IIyes[40][41][42]
ZrNCompound10yes[43]
ZrB12Compound6.0IIyes[42]
UTe2Compound2.10no[44]
CuBa0.15La1.85O4Cuprate52.5[45]
YBCOCuprate95120–250IIno
EuBCOCuprate93IIno[46]
GdBCOCuprate91IIno[47]
BSCCOCuprate104
HBCCOCuprate135
HgTlBaCaCuOCuprate164II[citation needed]
SmFeAs(O,F)Iron-based55
CeFeAs(O,F)Iron-based41
LaFeAs(O,F)Iron-based26
LaFeSiHIron-based11[48]
LaFePOIron-based4
FeSe:SrTiO3Iron-based60-100
(Ba,K)Fe2As2Iron-based38
NaFeAsIron-based20
La3Ni2O7Oxonickelate80 (>14 GPa)[49]
H2SPolyhydride203 (155 GPa)II
LaH10Polyhydride250 (150 GPa)[50]

Notes

[edit]
  1. ^According to,[4] superconductivity in Bi is not compatible with conventional BCS theory because the Fermi energy of Bi is comparable to the phonon energy (Debye frequency).

References

[edit]
  1. ^Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum".Physical Review.111 (1):132–142.Bibcode:1958PhRv..111..132C.doi:10.1103/PhysRev.111.132.
  2. ^abcdefghijklmnopqrstuvwxyzaaabacMatthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity".Reviews of Modern Physics.35 (1):1–22.Bibcode:1963RvMP...35....1M.doi:10.1103/RevModPhys.35.1.
  3. ^abcdefghijklmnopqrsEisenstein, J. (1954). "Superconducting Elements".Reviews of Modern Physics.26 (3):277–291.Bibcode:1954RvMP...26..277E.doi:10.1103/RevModPhys.26.277.
  4. ^abPrakash, O.; et al. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure".Science.355 (6320):52–55.arXiv:1603.04310.Bibcode:2017Sci...355...52P.doi:10.1126/science.aaf8227.PMID 27934703.S2CID 206649934.
  5. ^Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond".Nature.428 (6982):542–545.arXiv:cond-mat/0404156.Bibcode:2004Natur.428..542E.doi:10.1038/nature02449.PMID 15057827.S2CID 4423950.
  6. ^Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008)."Structure and superconductivity of isotope-enriched boron-doped diamond".Science and Technology of Advanced Materials.9 (4): 044210.Bibcode:2008STAdM...9d4210E.doi:10.1088/1468-6996/9/4/044210.PMC 5099641.PMID 27878027.Open access icon
  7. ^Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond".Diamond and Related Materials.16 (4–7): 911.Bibcode:2007DRM....16..911T.doi:10.1016/j.diamond.2007.01.027.S2CID 95904362.
  8. ^abcdKaxiras, Efthimios (2003).Atomic and electronic structure of solids. Cambridge University Press. p. 283.ISBN 0-521-52339-7.
  9. ^Tuoriniemi, J.; et al. (2007)."Superconductivity in lithium below 0.4 millikelvin at ambient pressure".Nature.447 (7141):187–189.Bibcode:2007Natur.447..187T.doi:10.1038/nature05820.PMID 17495921.S2CID 4430500.
  10. ^abcdFowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium".Physical Review Letters.15 (22): 860.Bibcode:1965PhRvL..15..860F.doi:10.1103/PhysRevLett.15.860.
  11. ^Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium".Physical Review.88 (2): 309.Bibcode:1952PhRv...88..309D.doi:10.1103/PhysRev.88.309.
  12. ^Buchal, Ch.; et al. (1983). "Superconductivity of Rhodium at Ultralow Temperatures".Phys. Rev. Lett.50 (1):64–67.Bibcode:1983PhRvL..50...64B.doi:10.1103/PhysRevLett.50.64.
  13. ^Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006)."Superconductivity in doped cubic silicon".Nature.444 (7118):465–8.Bibcode:2006Natur.444..465B.doi:10.1038/nature05340.PMID 17122852.S2CID 4383370.
  14. ^abLita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005)."Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors".IEEE Transactions on Applied Superconductivity.15 (2): 3528.Bibcode:2005ITAS...15.3528L.doi:10.1109/TASC.2005.849033.S2CID 5804011.
  15. ^Song, J; Fabbris, G; Bi, W; Haskel, D; Schilling, J.S. (2018-07-20)."Pressure-Induced Superconductivity in Elemental Ytterbium Metal".Physical Review Letters.121 (3): 037004.arXiv:1801.03630.Bibcode:2018PhRvL.121c7004S.doi:10.1103/PhysRevLett.121.037004.PMID 30085803.
  16. ^abRachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006)."Sp3-network superconductors made from IVth-group elements".Science and Technology of Advanced Materials.7:S88 –S93.Bibcode:2006STAdM...7S..88R.doi:10.1016/j.stam.2006.04.006.Open access icon
  17. ^Ma, Liang; Wang, Kui; Xie, Yu; Yang, Xin; Wang, Yingying; Zhou, Mi; Liu, Hanyu; Yu, Xiaohui; Zhao, Yongsheng; Wang, Hongbo; Liu, Guangtao (2022-04-20)."High-Temperature Superconducting Phase in Clathrate Calcium Hydride ${\mathrm{CaH}}_{6}$ up to 215 K at a Pressure of 172 GPa".Physical Review Letters.128 (16): 167001.doi:10.1103/PhysRevLett.128.167001.PMID 35522494.S2CID 248543296.
  18. ^Wells, Sarah (2022-04-20)."Elusive Superconducting Superhydride Synthesized".Physics.15.Bibcode:2022PhyOJ..15..s53W.doi:10.1103/Physics.15.s53.S2CID 249250489.
  19. ^abcdefgEmery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008)."Synthesis and superconducting properties of CaC6".Science and Technology of Advanced Materials.9 (4): 044102.Bibcode:2008STAdM...9d4102E.doi:10.1088/1468-6996/9/4/044102.PMC 5099629.PMID 27878015.Open access icon
  20. ^abcdefBelash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K".Synthetic Metals.34 (1–3):455–460.doi:10.1016/0379-6779(89)90424-4.
  21. ^Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001)."The Intriguing Superconductivity of Strontium Ruthenate".Physics Today.54 (1):42–47.Bibcode:2001PhT....54a..42M.doi:10.1063/1.1349611.hdl:2433/49957.ISSN 0031-9228.S2CID 53644564.
  22. ^Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60".Nature.352 (6332): 222.Bibcode:1991Natur.352..222T.doi:10.1038/352222a0.S2CID 4335561.
  23. ^Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60".Science.256 (5060):1190–1.Bibcode:1992Sci...256.1190X.doi:10.1126/science.256.5060.1190.PMID 17795215.S2CID 11537235.
  24. ^Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991)."Superconductivity at 28 K in RbxC60"(PDF).Physical Review Letters.66 (21):2830–2832.Bibcode:1991PhRvL..66.2830R.doi:10.1103/PhysRevLett.66.2830.PMID 10043627.
  25. ^"First fully computer-designed superconductor". KurzweilAI. Retrieved2013-10-11.
  26. ^Inushima, T. (2006)."Electronic structure of superconducting InN".Science and Technology of Advanced Materials.7:S112 –S116.Bibcode:2006STAdM...7S.112I.doi:10.1016/j.stam.2006.06.004.Open access icon
  27. ^Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008)."Superconductivity in transparent zinc-doped In2O3 films having low carrier density".Science and Technology of Advanced Materials.9 (4): 044208.Bibcode:2008STAdM...9d4208M.doi:10.1088/1468-6996/9/4/044208.PMC 5099639.PMID 27878025.Open access icon
  28. ^Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides".Physical Review B.25 (3): 1589.Bibcode:1982PhRvB..25.1589S.doi:10.1103/PhysRevB.25.1589.
  29. ^Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001)."Superconductivity at 39 K in magnesium diboride".Nature.410 (6824):63–4.Bibcode:2001Natur.410...63N.doi:10.1038/35065039.PMID 11242039.S2CID 4388025.
  30. ^Bernhardt, K.-H. (1975)."Preparation and Superconducting Properties of Niobium Carbonitride Wires"(PDF).Z. Naturforsch. A.30 (4):528–532.Bibcode:1975ZNatA..30..528B.doi:10.1515/zna-1975-0422.S2CID 95077302.
  31. ^Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides".Appl. Phys. Lett.7 (2):38–39.Bibcode:1965ApPhL...7...38P.doi:10.1063/1.1754287.
  32. ^Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties".Journal of Low Temperature Physics.34 (5–6): 569.Bibcode:1979JLTP...34..569O.doi:10.1007/BF00114941.S2CID 119846986.
  33. ^Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems".Journal of Low Temperature Physics.7 (3–4): 291.Bibcode:1972JLTP....7..291H.doi:10.1007/BF00660068.S2CID 122554738.
  34. ^Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn".Physical Review.95 (6): 1435.Bibcode:1954PhRv...95.1435M.doi:10.1103/PhysRev.95.1435.
  35. ^abMuranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008)."Superconductivity in carrier-doped silicon carbide".Science and Technology of Advanced Materials.9 (4): 044204.Bibcode:2008STAdM...9d4204M.doi:10.1088/1468-6996/9/4/044204.PMC 5099635.PMID 27878021.Open access icon
  36. ^Pierson, Hugh O. (1996).Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193.ISBN 0-8155-1392-5.
  37. ^Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982)."Magnetic properties of titanium nitride in superconducting state".Soviet Physics - Solid State.24 (4):689–690.
  38. ^Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy".Physical Review B.86 (18): 184503.arXiv:1210.6771.Bibcode:2012PhRvB..86r4503P.doi:10.1103/PhysRevB.86.184503.S2CID 118417332.
  39. ^Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic; Meingast, Christoph (2012-01-01)."Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure".Journal of the Physical Society of Japan.81 (Suppl.B): SB026.Bibcode:2012JPSJ...81B..26T.doi:10.1143/JPSJS.81SB.SB026.ISSN 0031-9015.
  40. ^Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals".Materials Research Bulletin.11 (8): 1019.doi:10.1016/0025-5408(76)90179-3.
  41. ^Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007)."Superconducting energy gap of YB6 studied by point-contact spectroscopy".Physica C: Superconductivity.460–462:626–627.Bibcode:2007PhyC..460..626S.doi:10.1016/j.physc.2007.04.135.
  42. ^abTsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal".Physical Review B.78 (2): 024522.arXiv:0707.2211.Bibcode:2008PhRvB..78b4522T.doi:10.1103/PhysRevB.78.024522.S2CID 119740895.
  43. ^Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means ofTc measurements".Surface and Interface Analysis.15 (6):377–382.doi:10.1002/sia.740150606.
  44. ^Wu, Z.; Weinberger, T. I.; Chen, J.; Cabala, A.; Chichinadze, D. V.; Shaffer, D.; Pospíšil, J.; Prokleška, J.; Haidamak, T.; Bastien, G.; Sechovský, V.; Hickey, A. J.; Mancera-Ugarte, M. J.; Benjamin, S.; Graf, D. E. (2024-09-10)."Enhanced triplet superconductivity in next-generation ultraclean UTe 2".Proceedings of the National Academy of Sciences.121 (37).doi:10.1073/pnas.2403067121.ISSN 0027-8424.PMC 11406238.PMID 39240969.
  45. ^Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J. (1987-01-30)."Superconductivity at 52.5 K in the Lanthanum-Barium-Copper-Oxide System".Science.235 (4788):567–569.Bibcode:1987Sci...235..567C.doi:10.1126/science.235.4788.567.ISSN 0036-8075.PMID 17758247.S2CID 32235782.
  46. ^Malavasi, L.; Tamburini, U. Anselmi; Galinetto, P.; Ghigna, P.; Flor, G. (2001)."The High-Temperature Superconductor EuBa2Cu3O6 + x: Role of Thermal History on Microstructure and Superconducting Properties".Journal of Materials Synthesis and Processing.9 (1):31–37.doi:10.1023/A:1011334631235.S2CID 135739533.
  47. ^Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01)."Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound".Journal of Physics: Conference Series.97 (1): 012250.Bibcode:2008JPhCS..97a2250S.doi:10.1088/1742-6596/97/1/012250.ISSN 1742-6596.
  48. ^Bernardini, F.; et al. (2008-12-03)."Iron-based superconductivity extended to the novel silicide LaFeSiH".Phys. Rev. B.97 (10): 100504.arXiv:1701.05010.Bibcode:2018PhRvB..97j0504B.doi:10.1103/PhysRevB.97.100504.hdl:11584/247860.S2CID 119004395.
  49. ^Sun, Hualei; Huo, Mengwu; Hu, Xunwu; Li, Jingyuan; Liu, Zengjia; Han, Yifeng; Tang, Lingyun; Mao, Zhongquan; Yang, Pengtao; Wang, Bosen; Cheng, Jinguang; Yao, Dao-Xin; Zhang, Guang-Ming; Wang, Meng (2023-09-21)."Signatures of superconductivity near 80 K in a nickelate under high pressure".Nature.621 (7979):493–498.arXiv:2305.09586.Bibcode:2023Natur.621..493S.doi:10.1038/s41586-023-06408-7.ISSN 0028-0836.PMID 37437603.S2CID 259843168.
  50. ^Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (May 2019)."Superconductivity at 250 K in lanthanum hydride under high pressures".Nature.569 (7757):528–531.arXiv:1812.01561.Bibcode:2019Natur.569..528D.doi:10.1038/s41586-019-1201-8.ISSN 0028-0836.PMID 31118520.S2CID 119231000.

External links

[edit]
Theories
Characteristic parameters
Phenomena
Classification
By magnetic response
By explanation
By critical temperature
By composition
Technological applications
List of superconductors
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_superconductors&oldid=1283376263"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp