Leonard Susskind | |
---|---|
![]() Susskind in 2013 | |
Born | (1940-06-16)June 16, 1940 (age 84)[2] New York City, U.S. |
Alma mater | City College of New York(BS) Cornell University(PhD) |
Known for | Black hole complementarity Causal patch Color confinement ER=EPR Hamiltonian lattice gauge theory Holographic principle Matrix theory (physics) String theory String theory landscape Worldsheet RST model Susskind–Glogower operator Kogut–Susskind fermions Fischler–Susskind mechanism |
Awards | Dirac Medal (2023) Oskar Klein medal (2018) Pomeranchuk Prize (2008) Science Writing Award (1998) Sakurai Prize (1998) Boris Pregel Award (1975)[1] |
Scientific career | |
Fields | Physics,mathematics |
Institutions | Yeshiva University Tel Aviv University Stanford University Stanford Institute for Theoretical Physics Korea Institute for Advanced Study Perimeter Institute for Theoretical Physics |
Thesis | Quantum mechanical approach to strong interactions (1965) |
Doctoral advisor | Peter A. Carruthers |
Doctoral students | Eduardo Fradkin Barak Kol Douglas Stanford |
Leonard Susskind (/ˈsʌskɪnd/; born June 16, 1940)[2][3] is an Americantheoretical physicist, Professor oftheoretical physics atStanford University and founding director of theStanford Institute for Theoretical Physics. His research interests arestring theory,quantum field theory,quantum statistical mechanics andquantum cosmology.[1] He is a member of the USNational Academy of Sciences,[4] and theAmerican Academy of Arts and Sciences,[5] an associate member of the faculty ofCanada'sPerimeter Institute for Theoretical Physics,[6] and a distinguished professor of theKorea Institute for Advanced Study.[7]
Susskind is widely regarded as one of the fathers ofstring theory.[8] He was the first to give a precise string-theoretic interpretation of theholographic principle in 1995[9] and the first to introduce the idea of thestring theory landscape in 2003.[10][11]
Susskind was awarded the1998 J. J. Sakurai Prize,[12] the2018 Oskar Klein Medal,[13] and theDirac Medal of theInternational Centre for Theoretical Physics in 2023.
Leonard Susskind was born to aJewish family from theSouth Bronx inNew York City.[14] He began working as aplumber at the age of 16, taking over from his father who had become ill.[14] Later, he enrolled in theCity College of New York as an engineering student and had planned to study mechanical engineering but he changed his mind and later graduated with aB.S. inphysics in 1962.[5] In an interview in theLos Angeles Times, Susskind recalls a discussion with his father that changed his career path: "When I told my father I wanted to be a physicist, he said, 'Hell no, you ain't going to work in a drug store.' I said, 'No, not a pharmacist.' I said, 'Like Einstein.' He poked me in the chest with a piece of plumbing pipe. 'You ain't going to be no engineer,' he said. 'You're going to be Einstein.'"[14] Susskind then studied atCornell University underPeter A. Carruthers, where he earned his Ph.D. in 1965.
Susskind was an assistant professor of physics, then an associate professor atYeshiva University (1966–1970), after which he went for a year to theTel Aviv University (1971–72), returning to Yeshiva to become a professor of physics (1970–1979). Since 1979 he has been professor of physics atStanford University,[1] and since 2000 has held theFelix Bloch professorship of physics.
Susskind was awarded the1998 J. J. Sakurai Prize for his "pioneering contributions to hadronic string models,lattice gauge theories,quantum chromodynamics, and dynamical symmetry breaking." Susskind's hallmark, according to colleagues, has been the application of "brilliant imagination and originality to the theoretical study of the nature of the elementary particles and forces that make up the physical world."[12]
In 2007, Susskind joined the faculty ofPerimeter Institute for Theoretical Physics in Waterloo,Ontario, Canada, as an associate member. He has been elected to theNational Academy of Sciences and theAmerican Academy of Arts and Sciences. He is also adistinguished professor atKorea Institute for Advanced Study.[15]
Susskind was one of at least three physicists, alongsideYoichiro Nambu andHolger Bech Nielsen, who independently discovered during or around 1970 thatGabriele Veneziano'sdual resonance model ofstrong interactions could be described by a quantum mechanical model of oscillating strings,[16] and was the first to propose the idea of thestring theory landscape. Susskind has also made important contributions in the following areas of physics:
Susskind is the author of several popular science books.
The Cosmic Landscape: String Theory and the Illusion of Intelligent Design is Susskind's first popular science book, published by Little, Brown and Company on December 12, 2005.[26] It is Susskind's attempt to bring his idea of the anthropic landscape of string theory to the general public. In the book, Susskind describes how the string theory landscape was an almost inevitable consequence of several factors, one of which wasSteven Weinberg's prediction of thecosmological constant in 1987. The question addressed here is why our universe is fine-tuned for our existence. Susskind explains that Weinberg calculated that if the cosmological constant was just a little different, our universe would cease to exist.
The Black Hole War: My Battle withStephen Hawking to Make the World Safe for Quantum Mechanics is Susskind's second popular science book, published by Little, Brown, and Company on July 7, 2008.[27] The book is his most famous work and explains what he thinks would happen to the information and matter stored in a black hole when it evaporates. The book sparked from a debate that started in 1981, when there was a meeting of physicists to try to decode some of the mysteries about how particles of particular elemental compounds function. During this discussion Stephen Hawking stated that the information inside a black hole is lost forever as the black hole evaporates. It took 28 years for Leonard Susskind to formulate his theory that would prove Hawking wrong. He then published his theory in his book,The Black Hole War. LikeThe Cosmic Landscape,The Black Hole War is aimed at the lay reader. He writes: "The real tools for understanding the quantum universe are abstract mathematics: infinite dimensional Hilbert spaces, projection operators, unitary matrices and a lot of other advanced principles that take a few years to learn. But let's see how we do in just a few pages".
Susskind co-authored a series of companion books to his lecture seriesThe Theoretical Minimum. The first of these,The Theoretical Minimum: What You Need to Know to Start Doing Physics,[28] was published in 2013 and presents the modern formulations of classical mechanics. The second of these,Quantum Mechanics: The Theoretical Minimum,[29] was published in February 2014. The third book,Special Relativity and Classical Field Theory: The Theoretical Minimum (September 26, 2017),[30] introduces readers to Einstein's special relativity and Maxwell's classical field theory. The fourth book in the series,General Relativity: The Theoretical Minimum was published in January 2023.
Susskind teaches a series of Stanford Continuing Studies courses about modern physics referred to asThe Theoretical Minimum. The title of the series is a clear reference toLandau's famous comprehensive exam called the "Theoretical Minimum" which students were expected to pass before admission to his school.The Theoretical Minimum lectures later formed the basis for the books of the same name.[31] The goal of the courses is to teach the basic but rigorous theoretical foundations required to study certain areas of physics. The sequence coversclassical mechanics,relativity,quantum mechanics,statistical mechanics, andcosmology, including the physics ofblack holes.[32]
These courses are available onThe Theoretical Minimum website, oniTunes, and onYouTube. The courses are intended for the mathematically literate[33] public as well as physical science/mathematics students. Susskind aims the courses at people with prior exposure to algebra, and calculus.[34] Homework and study outside of class is otherwise unnecessary. Susskind explains most of the mathematics used, which form the basis of the lectures.
Susskind gave 3 lectures "The Birth of the Universe and the Origin of Laws of Physics" April 28-May 1, 2014 in the CornellMessenger Lecture series which are posted on a Cornellwebsite.[35]
TheSmolin–Susskind debate refers to the series of intense postings in 2004 betweenLee Smolin and Susskind, concerning Smolin's argument that the "anthropic principle cannot yield any falsifiable predictions, and therefore cannot be a part of science".[36] It began on 26 July 2004, with Smolin's publication of "scientific alternatives to the anthropic principle".[citation needed] Smolin e-mailed Susskind asking for a comment. Having not had the chance to read the paper, Susskind requested a summarization of his arguments.
Smolin obliged, and on 28 July 2004, Susskind responded, saying that the logic Smolin followed "can lead to ridiculous conclusions".[36] The next day, Smolin responded, saying that "If a large body of our colleagues feels comfortable believing a theory that cannot be proved wrong, then the progress of science could get stuck, leading to a situation in which false, but unfalsifiable theories dominate the attention of our field." This was followed by another paper by Susskind which made a few comments about Smolin's theory of "cosmic natural selection".[37]
The Smolin–Susskind debate finally ended with each of them agreeing to write a final letter which would be posted on the edge.org website, with three conditions attached:
He has been married twice, first in 1960,[5] and he has four children. Susskind is a great-grandfather.[38]
{{cite journal}}
:Cite journal requires|journal=
(help){{cite journal}}
:Cite journal requires|journal=
(help)The insistence on unitarity in the presence of black holes led 't Hooft (1993) and Susskind (1995b) to embrace a more radical,holographic interpretation of ...
The courses are specifically aimed at people who know, or once knew, a bit of algebra and calculus, but are more or less beginners.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link)