Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Theta function

From Wikipedia, the free encyclopedia
(Redirected fromJacobi theta function)
Special functions of several complex variables
For other θ functions, seeTheta function (disambiguation).
Jacobi's theta functionθ1 with nomeq =eiπτ = 0.1e0.1iπ:θ1(z,q)=2q14n=0(1)nqn(n+1)sin(2n+1)z=n=(1)n12q(n+12)2e(2n+1)iz.{\displaystyle {\begin{aligned}\theta _{1}(z,q)&=2q^{\frac {1}{4}}\sum _{n=0}^{\infty }(-1)^{n}q^{n(n+1)}\sin(2n+1)z\\&=\sum _{n=-\infty }^{\infty }(-1)^{n-{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}e^{(2n+1)iz}.\end{aligned}}}

Inmathematics,theta functions arespecial functions ofseveral complex variables. They show up in many topics, includingAbelian varieties,moduli spaces,quadratic forms, andsolitons. Theta functions are parametrized by points in atube domain inside a complexLagrangian Grassmannian,[1] namely theSiegel upper half space.

The most common form of theta function is that occurring in the theory ofelliptic functions. With respect to one of the complex variables (conventionally calledz), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it aquasiperiodic function. In the abstract theory this quasiperiodicity comes from thecohomology class of aline bundle on a complex torus, a condition ofdescent.

One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions".[2]

Throughout this article,(eπiτ)α{\displaystyle (e^{\pi i\tau })^{\alpha }} should be interpreted aseαπiτ{\displaystyle e^{\alpha \pi i\tau }} (in order to resolve issues of choice ofbranch).[note 1]

Jacobi theta function

[edit]

There are several closely related functions called Jacobi theta functions, andmany different and incompatible systems of notation for them. OneJacobi theta function (named afterCarl Gustav Jacob Jacobi) is a function defined for two complex variablesz andτ, wherez can be anycomplex number andτ is thehalf-period ratio, confined to theupper half-plane, which means it has a positive imaginary part. It is given by the formula

ϑ(z;τ)=n=exp(πin2τ+2πinz)=1+2n=1qn2cos(2πnz)=n=qn2ηn{\displaystyle {\begin{aligned}\vartheta (z;\tau )&=\sum _{n=-\infty }^{\infty }\exp \left(\pi in^{2}\tau +2\pi inz\right)\\&=1+2\sum _{n=1}^{\infty }q^{n^{2}}\cos(2\pi nz)\\&=\sum _{n=-\infty }^{\infty }q^{n^{2}}\eta ^{n}\end{aligned}}}

whereq = exp(πiτ) is thenome andη = exp(2πiz). It is aJacobi form. The restriction ensures that it is an absolutely convergent series. At fixedτ, this is aFourier series for a 1-periodicentire function ofz. Accordingly, the theta function is 1-periodic inz:

ϑ(z+1;τ)=ϑ(z;τ).{\displaystyle \vartheta (z+1;\tau )=\vartheta (z;\tau ).}

Bycompleting the square, it is alsoτ-quasiperiodic inz, with

ϑ(z+τ;τ)=exp(πi(τ+2z))ϑ(z;τ).{\displaystyle \vartheta (z+\tau ;\tau )=\exp {\bigl (}-\pi i(\tau +2z){\bigr )}\vartheta (z;\tau ).}

Thus, in general,

ϑ(z+a+bτ;τ)=exp(πib2τ2πibz)ϑ(z;τ){\displaystyle \vartheta (z+a+b\tau ;\tau )=\exp \left(-\pi ib^{2}\tau -2\pi ibz\right)\vartheta (z;\tau )}

for any integersa andb.

For any fixedτ{\displaystyle \tau }, the function is an entire function on the complex plane, so byLiouville's theorem, it cannot be doubly periodic in1,τ{\displaystyle 1,\tau } unless it is constant, and so the best we can do is to make it periodic in1{\displaystyle 1} and quasi-periodic inτ{\displaystyle \tau }. Indeed, since|ϑ(z+a+bτ;τ)ϑ(z;τ)|=exp(π(b2(τ)+2b(z))){\displaystyle \left|{\frac {\vartheta (z+a+b\tau ;\tau )}{\vartheta (z;\tau )}}\right|=\exp \left(\pi (b^{2}\Im (\tau )+2b\Im (z))\right)}and(τ)>0{\displaystyle \Im (\tau )>0}, the functionϑ(z,τ){\displaystyle \vartheta (z,\tau )} is unbounded, as required by Liouville's theorem.

It is in fact the most general entire function with 2 quasi-periods, in the following sense:[3]

TheoremIff:CC{\displaystyle f:\mathbb {C} \to \mathbb {C} } is entire and nonconstant, and satisfies the functional equations{f(z+1)=f(z)f(z+τ)=eaz+2πibf(z){\displaystyle {\begin{cases}f(z+1)=f(z)\\f(z+\tau )=e^{az+2\pi ib}f(z)\end{cases}}}for some constanta,bC{\displaystyle a,b\in \mathbb {C} }.

Ifa=0{\displaystyle a=0}, thenb=τ{\displaystyle b=\tau } andf(z)=e2πiz{\displaystyle f(z)=e^{2\pi iz}}. Ifa=2πi{\displaystyle a=-2\pi i}, thenf(z)=Cϑ(z+12τ+b,τ){\displaystyle f(z)=C\vartheta (z+{\frac {1}{2}}\tau +b,\tau )} for some nonzeroCC{\displaystyle C\in \mathbb {C} }.

Theta functionθ1 with different nomeq =eiπτ. The black dot in the right-hand picture indicates howq changes withτ.
Theta functionθ1 with different nomeq =eiπτ. The black dot in the right-hand picture indicates howq changes withτ.

Auxiliary functions

[edit]

The Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions, in which case it is written with a double 0 subscript:

ϑ00(z;τ)=ϑ(z;τ){\displaystyle \vartheta _{00}(z;\tau )=\vartheta (z;\tau )}

The auxiliary (or half-period) functions are defined by

ϑ01(z;τ)=ϑ(z+12;τ)ϑ10(z;τ)=exp(14πiτ+πiz)ϑ(z+12τ;τ)ϑ11(z;τ)=exp(14πiτ+πi(z+12))ϑ(z+12τ+12;τ).{\displaystyle {\begin{aligned}\vartheta _{01}(z;\tau )&=\vartheta \left(z+{\tfrac {1}{2}};\tau \right)\\[3pt]\vartheta _{10}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi iz\right)\vartheta \left(z+{\tfrac {1}{2}}\tau ;\tau \right)\\[3pt]\vartheta _{11}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi i\left(z+{\tfrac {1}{2}}\right)\right)\vartheta \left(z+{\tfrac {1}{2}}\tau +{\tfrac {1}{2}};\tau \right).\end{aligned}}}

This notation followsRiemann andMumford;Jacobi's original formulation was in terms of thenomeq =eiπτ rather thanτ. In Jacobi's notation theθ-functions are written:

θ1(z;q)=θ1(πz,q)=ϑ11(z;τ)θ2(z;q)=θ2(πz,q)=ϑ10(z;τ)θ3(z;q)=θ3(πz,q)=ϑ00(z;τ)θ4(z;q)=θ4(πz,q)=ϑ01(z;τ){\displaystyle {\begin{aligned}\theta _{1}(z;q)&=\theta _{1}(\pi z,q)=-\vartheta _{11}(z;\tau )\\\theta _{2}(z;q)&=\theta _{2}(\pi z,q)=\vartheta _{10}(z;\tau )\\\theta _{3}(z;q)&=\theta _{3}(\pi z,q)=\vartheta _{00}(z;\tau )\\\theta _{4}(z;q)&=\theta _{4}(\pi z,q)=\vartheta _{01}(z;\tau )\end{aligned}}}
Jacobi theta 1
Jacobi theta 2
Jacobi theta 3
Jacobi theta 4

The above definitions of the Jacobi theta functions are by no means unique. SeeJacobi theta functions (notational variations) for further discussion.

If we setz = 0 in the above theta functions, we obtain four functions ofτ only, defined on the upper half-plane. These functions are calledTheta Nullwert functions, based on the German term forzero value because of the annullation of the left entry in the theta function expression. Alternatively, we obtain four functions ofq only, defined on the unit disk|q|<1{\displaystyle |q|<1}. They are sometimes calledtheta constants:[note 2]

ϑ11(0;τ)=θ1(q)=n=(1)n1/2q(n+1/2)2ϑ10(0;τ)=θ2(q)=n=q(n+1/2)2ϑ00(0;τ)=θ3(q)=n=qn2ϑ01(0;τ)=θ4(q)=n=(1)nqn2{\displaystyle {\begin{aligned}\vartheta _{11}(0;\tau )&=-\theta _{1}(q)=-\sum _{n=-\infty }^{\infty }(-1)^{n-1/2}q^{(n+1/2)^{2}}\\\vartheta _{10}(0;\tau )&=\theta _{2}(q)=\sum _{n=-\infty }^{\infty }q^{(n+1/2)^{2}}\\\vartheta _{00}(0;\tau )&=\theta _{3}(q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}\\\vartheta _{01}(0;\tau )&=\theta _{4}(q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}\end{aligned}}}

with thenomeq =eiπτ. Observe thatθ1(q)=0{\displaystyle \theta _{1}(q)=0}. These can be used to define a variety ofmodular forms, and to parametrize certain curves; in particular, theJacobi identity is

θ2(q)4+θ4(q)4=θ3(q)4{\displaystyle \theta _{2}(q)^{4}+\theta _{4}(q)^{4}=\theta _{3}(q)^{4}}

or equivalently,

ϑ01(0;τ)4+ϑ10(0;τ)4=ϑ00(0;τ)4{\displaystyle \vartheta _{01}(0;\tau )^{4}+\vartheta _{10}(0;\tau )^{4}=\vartheta _{00}(0;\tau )^{4}}

which is theFermat curve of degree four.

Jacobi identities

[edit]

Jacobi's identities describe how theta functions transform under themodular group, which is generated byττ + 1 andτ ↦ −1/τ. Equations for the first transform are easily found since adding one toτ in the exponent has the same effect as adding1/2 toz (nn2mod 2). For the second, let

α=(iτ)12exp(πτiz2).{\displaystyle \alpha =(-i\tau )^{\frac {1}{2}}\exp \left({\frac {\pi }{\tau }}iz^{2}\right).}

Then

ϑ00(zτ;1τ)=αϑ00(z;τ)ϑ01(zτ;1τ)=αϑ10(z;τ)ϑ10(zτ;1τ)=αϑ01(z;τ)ϑ11(zτ;1τ)=iαϑ11(z;τ).{\displaystyle {\begin{aligned}\vartheta _{00}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{00}(z;\tau )\quad &\vartheta _{01}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{10}(z;\tau )\\[3pt]\vartheta _{10}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{01}(z;\tau )\quad &\vartheta _{11}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=-i\alpha \,\vartheta _{11}(z;\tau ).\end{aligned}}}

Theta functions in terms of the nome

[edit]

Instead of expressing the Theta functions in terms ofz andτ, we may express them in terms of argumentsw and thenomeq, wherew =eπiz andq =eπiτ. In this form, the functions become

ϑ00(w,q)=n=(w2)nqn2ϑ01(w,q)=n=(1)n(w2)nqn2ϑ10(w,q)=n=(w2)n+12q(n+12)2ϑ11(w,q)=in=(1)n(w2)n+12q(n+12)2.{\displaystyle {\begin{aligned}\vartheta _{00}(w,q)&=\sum _{n=-\infty }^{\infty }\left(w^{2}\right)^{n}q^{n^{2}}\quad &\vartheta _{01}(w,q)&=\sum _{n=-\infty }^{\infty }(-1)^{n}\left(w^{2}\right)^{n}q^{n^{2}}\\[3pt]\vartheta _{10}(w,q)&=\sum _{n=-\infty }^{\infty }\left(w^{2}\right)^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}\quad &\vartheta _{11}(w,q)&=i\sum _{n=-\infty }^{\infty }(-1)^{n}\left(w^{2}\right)^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}.\end{aligned}}}

We see that the theta functions can also be defined in terms ofw andq, without a direct reference to the exponential function. These formulas can, therefore, be used to define the Theta functions over otherfields where the exponential function might not be everywhere defined, such as fields ofp-adic numbers.

Product representations

[edit]

TheJacobi triple product (a special case of theMacdonald identities) tells us that for complex numbersw andq with|q| < 1 andw ≠ 0 we have

m=1(1q2m)(1+w2q2m1)(1+w2q2m1)=n=w2nqn2.{\displaystyle \prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+w^{2}q^{2m-1}\right)\left(1+w^{-2}q^{2m-1}\right)=\sum _{n=-\infty }^{\infty }w^{2n}q^{n^{2}}.}

It can be proven by elementary means, as for instance in Hardy and Wright'sAn Introduction to the Theory of Numbers.

If we express the theta function in terms of the nomeq =eπiτ (noting some authors instead setq =e2πiτ) and takew =eπiz then

ϑ(z;τ)=n=exp(πiτn2)exp(2πizn)=n=w2nqn2.{\displaystyle \vartheta (z;\tau )=\sum _{n=-\infty }^{\infty }\exp(\pi i\tau n^{2})\exp(2\pi izn)=\sum _{n=-\infty }^{\infty }w^{2n}q^{n^{2}}.}

We therefore obtain a product formula for the theta function in the form

ϑ(z;τ)=m=1(1exp(2mπiτ))(1+exp((2m1)πiτ+2πiz))(1+exp((2m1)πiτ2πiz)).{\displaystyle \vartheta (z;\tau )=\prod _{m=1}^{\infty }{\big (}1-\exp(2m\pi i\tau ){\big )}{\Big (}1+\exp {\big (}(2m-1)\pi i\tau +2\pi iz{\big )}{\Big )}{\Big (}1+\exp {\big (}(2m-1)\pi i\tau -2\pi iz{\big )}{\Big )}.}

In terms ofw andq:

ϑ(z;τ)=m=1(1q2m)(1+q2m1w2)(1+q2m1w2)=(q2;q2)(w2q;q2)(qw2;q2)=(q2;q2)θ(w2q;q2){\displaystyle {\begin{aligned}\vartheta (z;\tau )&=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+q^{2m-1}w^{2}\right)\left(1+{\frac {q^{2m-1}}{w^{2}}}\right)\\&=\left(q^{2};q^{2}\right)_{\infty }\,\left(-w^{2}q;q^{2}\right)_{\infty }\,\left(-{\frac {q}{w^{2}}};q^{2}\right)_{\infty }\\&=\left(q^{2};q^{2}\right)_{\infty }\,\theta \left(-w^{2}q;q^{2}\right)\end{aligned}}}

where(  ;  ) is theq-Pochhammer symbol andθ(  ;  ) is theq-theta function. Expanding terms out, the Jacobi triple product can also be written

m=1(1q2m)(1+(w2+w2)q2m1+q4m2),{\displaystyle \prod _{m=1}^{\infty }\left(1-q^{2m}\right){\Big (}1+\left(w^{2}+w^{-2}\right)q^{2m-1}+q^{4m-2}{\Big )},}

which we may also write as

ϑ(zq)=m=1(1q2m)(1+2cos(2πz)q2m1+q4m2).{\displaystyle \vartheta (z\mid q)=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+2\cos(2\pi z)q^{2m-1}+q^{4m-2}\right).}

This form is valid in general but clearly is of particular interest whenz is real. Similar product formulas for the auxiliary theta functions are

ϑ01(zq)=m=1(1q2m)(12cos(2πz)q2m1+q4m2),ϑ10(zq)=2q14cos(πz)m=1(1q2m)(1+2cos(2πz)q2m+q4m),ϑ11(zq)=2q14sin(πz)m=1(1q2m)(12cos(2πz)q2m+q4m).{\displaystyle {\begin{aligned}\vartheta _{01}(z\mid q)&=\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1-2\cos(2\pi z)q^{2m-1}+q^{4m-2}\right),\\[3pt]\vartheta _{10}(z\mid q)&=2q^{\frac {1}{4}}\cos(\pi z)\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1+2\cos(2\pi z)q^{2m}+q^{4m}\right),\\[3pt]\vartheta _{11}(z\mid q)&=-2q^{\frac {1}{4}}\sin(\pi z)\prod _{m=1}^{\infty }\left(1-q^{2m}\right)\left(1-2\cos(2\pi z)q^{2m}+q^{4m}\right).\end{aligned}}}

In particular,limq0ϑ10(zq)2q14=cos(πz),limq0ϑ11(zq)2q14=sin(πz){\displaystyle \lim _{q\to 0}{\frac {\vartheta _{10}(z\mid q)}{2q^{\frac {1}{4}}}}=\cos(\pi z),\quad \lim _{q\to 0}{\frac {-\vartheta _{11}(z\mid q)}{2q^{-{\frac {1}{4}}}}}=\sin(\pi z)}so we may interpret them as one-parameter deformations of the periodic functionssin,cos{\displaystyle \sin ,\cos }, again validating the interpretation of the theta function as the most general 2 quasi-period function.

Integral representations

[edit]

The Jacobi theta functions have the following integral representations:

ϑ00(z;τ)=iii+eiπτu2cos(2πuz+πu)sin(πu)du;ϑ01(z;τ)=iii+eiπτu2cos(2πuz)sin(πu)du;ϑ10(z;τ)=ieiπz+14iπτii+eiπτu2cos(2πuz+πu+πτu)sin(πu)du;ϑ11(z;τ)=eiπz+14iπτii+eiπτu2cos(2πuz+πτu)sin(πu)du.{\displaystyle {\begin{aligned}\vartheta _{00}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{01}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{10}(z;\tau )&=-ie^{i\pi z+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi u+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{11}(z;\tau )&=e^{i\pi z+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2\pi uz+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u.\end{aligned}}}

The Theta Nullwert functionθ3(q){\displaystyle \theta _{3}(q)} as this integral identity:

θ3(q)=1+4qln(1/q)π0exp[ln(1/q)x2]{1q2cos[2ln(1/q)x]}12q2cos[2ln(1/q)x]+q4dx{\displaystyle \theta _{3}(q)=1+{\frac {4q{\sqrt {\ln(1/q)}}}{\sqrt {\pi }}}\int _{0}^{\infty }{\frac {\exp[-\ln(1/q)\,x^{2}]\{1-q^{2}\cos[2\ln(1/q)\,x]\}}{1-2q^{2}\cos[2\ln(1/q)\,x]+q^{4}}}\,\mathrm {d} x}

This formula was discussed in the essaySquare series generating function transformations by the mathematician Maxie Schmidt from Georgia in Atlanta.

Based on this formula following three eminent examples are given:

[2πK(122)]1/2=θ3[exp(π)]=1+4exp(π)0exp(πx2)[1exp(2π)cos(2πx)]12exp(2π)cos(2πx)+exp(4π)dx{\displaystyle {\biggl [}{\frac {2}{\pi }}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}{\biggr ]}^{1/2}=\theta _{3}{\bigl [}\exp(-\pi ){\bigr ]}=1+4\exp(-\pi )\int _{0}^{\infty }{\frac {\exp(-\pi x^{2})[1-\exp(-2\pi )\cos(2\pi x)]}{1-2\exp(-2\pi )\cos(2\pi x)+\exp(-4\pi )}}\,\mathrm {d} x}
[2πK(21)]1/2=θ3[exp(2π)]=1+424exp(2π)0exp(2πx2)[1exp(22π)cos(22πx)]12exp(22π)cos(22πx)+exp(42π)dx{\displaystyle {\biggl [}{\frac {2}{\pi }}K({\sqrt {2}}-1){\biggr ]}^{1/2}=\theta _{3}{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=1+4\,{\sqrt[{4}]{2}}\exp(-{\sqrt {2}}\,\pi )\int _{0}^{\infty }{\frac {\exp(-{\sqrt {2}}\,\pi x^{2})[1-\exp(-2{\sqrt {2}}\,\pi )\cos(2{\sqrt {2}}\,\pi x)]}{1-2\exp(-2{\sqrt {2}}\,\pi )\cos(2{\sqrt {2}}\,\pi x)+\exp(-4{\sqrt {2}}\,\pi )}}\,\mathrm {d} x}
{2πK[sin(π12)]}1/2=θ3[exp(3π)]=1+434exp(3π)0exp(3πx2)[1exp(23π)cos(23πx)]12exp(23π)cos(23πx)+exp(43π)dx{\displaystyle {\biggl \{}{\frac {2}{\pi }}K{\bigl [}\sin {\bigl (}{\frac {\pi }{12}}{\bigr )}{\bigr ]}{\biggr \}}^{1/2}=\theta _{3}{\bigl [}\exp(-{\sqrt {3}}\,\pi ){\bigr ]}=1+4\,{\sqrt[{4}]{3}}\exp(-{\sqrt {3}}\,\pi )\int _{0}^{\infty }{\frac {\exp(-{\sqrt {3}}\,\pi x^{2})[1-\exp(-2{\sqrt {3}}\,\pi )\cos(2{\sqrt {3}}\,\pi x)]}{1-2\exp(-2{\sqrt {3}}\,\pi )\cos(2{\sqrt {3}}\,\pi x)+\exp(-4{\sqrt {3}}\,\pi )}}\,\mathrm {d} x}

Furthermore, the theta examplesθ3(12){\displaystyle \theta _{3}({\tfrac {1}{2}})} andθ3(13){\displaystyle \theta _{3}({\tfrac {1}{3}})} shall be displayed:

θ3(12)=1+2n=112n2=1+2π1/2ln(2)0exp[ln(2)x2]{164cos[2ln(2)x]}178cos[2ln(2)x]dx{\displaystyle \theta _{3}\left({\frac {1}{2}}\right)=1+2\sum _{n=1}^{\infty }{\frac {1}{2^{n^{2}}}}=1+2\pi ^{-1/2}{\sqrt {\ln(2)}}\int _{0}^{\infty }{\frac {\exp[-\ln(2)\,x^{2}]\{16-4\cos[2\ln(2)\,x]\}}{17-8\cos[2\ln(2)\,x]}}\,\mathrm {d} x}
θ3(12)=2.128936827211877158669{\displaystyle \theta _{3}\left({\frac {1}{2}}\right)=2.128936827211877158669\ldots }
θ3(13)=1+2n=113n2=1+43π1/2ln(3)0exp[ln(3)x2]{819cos[2ln(3)x]}8218cos[2ln(3)x]dx{\displaystyle \theta _{3}\left({\frac {1}{3}}\right)=1+2\sum _{n=1}^{\infty }{\frac {1}{3^{n^{2}}}}=1+{\frac {4}{3}}\pi ^{-1/2}{\sqrt {\ln(3)}}\int _{0}^{\infty }{\frac {\exp[-\ln(3)\,x^{2}]\{81-9\cos[2\ln(3)\,x]\}}{82-18\cos[2\ln(3)\,x]}}\,\mathrm {d} x}
θ3(13)=1.691459681681715341348{\displaystyle \theta _{3}\left({\frac {1}{3}}\right)=1.691459681681715341348\ldots }

Some interesting relations

[edit]

If|q|<1{\displaystyle |q|<1} anda>0{\displaystyle a>0}, then the following theta functions

θ3(a,b;q)=n=qan2+bn{\displaystyle \theta _{3}(a,b;q)=\sum _{n=-\infty }^{\infty }q^{an^{2}+bn}}
θ4(a,b;q)=n=(1)nqan2+bn{\displaystyle \theta _{4}(a,b;q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{an^{2}+bn}}

have interesting arithmetical and modular properties. Whena,b,p{\displaystyle a,b,p} are positive integers, then[4][5]

log(θ3(p2,p2a;q)θ3(p2,p2b;q))=n=1qn(d|nn/d±a(p)(1)ddd|nn/d±b(p)(1)dd){\displaystyle \log \left({\frac {\theta _{3}\left({\frac {p}{2}},{\frac {p}{2}}-a;q\right)}{\theta _{3}\left({\frac {p}{2}},{\frac {p}{2}}-b;q\right)}}\right)=-\sum _{n=1}^{\infty }q^{n}\left(\sum _{\begin{array}{cc}d|n\\n/d\equiv \pm a(p)\end{array}}{\frac {(-1)^{d}}{d}}-\sum _{\begin{array}{cc}d|n\\n/d\equiv \pm b(p)\end{array}}{\frac {(-1)^{d}}{d}}\right)}
log(θ4(p2,p2a;q)θ4(p2,p2b;q))=n=1qn(d|nn/d±a(p)1dd|nn/d±b(p)1d){\displaystyle \log \left({\frac {\theta _{4}\left({\frac {p}{2}},{\frac {p}{2}}-a;q\right)}{\theta _{4}\left({\frac {p}{2}},{\frac {p}{2}}-b;q\right)}}\right)=-\sum _{n=1}^{\infty }q^{n}\left(\sum _{\begin{array}{cc}d|n\\n/d\equiv \pm a(p)\end{array}}{\frac {1}{d}}-\sum _{\begin{array}{cc}d|n\\n/d\equiv \pm b(p)\end{array}}{\frac {1}{d}}\right)}

Also ifq=eπiz{\displaystyle q=e^{\pi iz}},Im(z)>0{\displaystyle Im(z)>0}, the functions with :

ϑ+(z)=θ+(a,p;z)=qp/8+a2/(2p)a/2θ3(p2,p2a;q){\displaystyle \vartheta _{+}(z)=\theta _{+}(a,p;z)=q^{p/8+a^{2}/(2p)-a/2}\theta _{3}\left({\frac {p}{2}},{\frac {p}{2}}-a;q\right)}

and

ϑ(z)=θ(a,p;z)=qp/8+a2/(2p)a/2θ4(p2,p2a;q){\displaystyle \vartheta _{-}(z)=\theta _{-}(a,p;z)=q^{p/8+a^{2}/(2p)-a/2}\theta _{4}\left({\frac {p}{2}},{\frac {p}{2}}-a;q\right)}

are modular forms with weight1/2{\displaystyle 1/2} inΓ(2p){\displaystyle \Gamma (2p)} i.e. Ifa1,b1,c1,d1{\displaystyle a_{1},b_{1},c_{1},d_{1}} are integers such thata1,d11(2p){\displaystyle a_{1},d_{1}\equiv 1(2p)},b1,c10(2p){\displaystyle b_{1},c_{1}\equiv 0(2p)} anda1d1b1c1=1{\displaystyle a_{1}d_{1}-b_{1}c_{1}=1} there existsϵ±=ϵ±(a1,b1,c1,d1){\displaystyle \epsilon _{\pm }=\epsilon _{\pm }(a_{1},b_{1},c_{1},d_{1})},(ϵ±)24=1{\displaystyle (\epsilon _{\pm })^{24}=1}, such that for all complex numbersz{\displaystyle z} withIm(z)>0{\displaystyle Im(z)>0}, we have

ϑ±(a1z+b1c1z+d1)=ϵ±c1z+d1ϑ±(z){\displaystyle \vartheta _{\pm }\left({\frac {a_{1}z+b_{1}}{c_{1}z+d_{1}}}\right)=\epsilon _{\pm }{\sqrt {c_{1}z+d_{1}}}\vartheta _{\pm }(z)}

Explicit values

[edit]

Lemniscatic values

[edit]

Proper credit for most of these results goes to Ramanujan. SeeRamanujan's lost notebook and a relevant reference atEuler function. The Ramanujan results quoted atEuler function plus a few elementary operations give the results below, so they are either in Ramanujan's lost notebook or follow immediately from it. See also Yi (2004).[6] Define,

φ(q)=ϑ00(0;τ)=θ3(0;q)=n=qn2{\displaystyle \quad \varphi (q)=\vartheta _{00}(0;\tau )=\theta _{3}(0;q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}}

with the nomeq=eπiτ,{\displaystyle q=e^{\pi i\tau },}τ=n1,{\displaystyle \tau =n{\sqrt {-1}},} andDedekind eta functionη(τ).{\displaystyle \eta (\tau ).} Then forn=1,2,3,{\displaystyle n=1,2,3,\dots }

φ(eπ)=π4Γ(34)=2η(1)φ(e2π)=π4Γ(34)2+22φ(e3π)=π4Γ(34)1+31088φ(e4π)=π4Γ(34)2+844φ(e5π)=π4Γ(34)2+55φ(e6π)=π4Γ(34)14+34+44+941238φ(e7π)=π4Γ(34)13+7+7+371438716φ(e8π)=π4Γ(34)2+2+12884φ(e9π)=π4Γ(34)1+2+2333φ(e10π)=π4Γ(34)644+804+814+10042004φ(e11π)=π4Γ(34)11+11+(5+33+11+33)44+3333+(5+3311+33)44+3333521805248φ(e12π)=π4Γ(34)14+24+34+44+94+184+24421088φ(e13π)=π4Γ(34)13+813+(1163+13)143+7833+(11+63+13)1437833197734φ(e14π)=π4Γ(34)13+7+7+37+10+27+2884+728716φ(e15π)=π4Γ(34)7+33+5+15+604+15004123852φ(e16π)=φ(e4π)+π4Γ(34)1+2412816φ(e17π)=π4Γ(34)2(1+174)+1785+1717+17172φ(e20π)=φ(e5π)+π4Γ(34)3+254526φ(e36π)=3φ(e9π)+2φ(e4π)φ(eπ)+π4Γ(34)24+184+21643{\displaystyle {\begin{aligned}\varphi \left(e^{-\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}={\sqrt {2}}\,\eta \left({\sqrt {-1}}\right)\\\varphi \left(e^{-2\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {2+{\sqrt {2}}}}{2}}\\\varphi \left(e^{-3\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {1+{\sqrt {3}}}}{\sqrt[{8}]{108}}}\\\varphi \left(e^{-4\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {2+{\sqrt[{4}]{8}}}{4}}\\\varphi \left(e^{-5\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt {\frac {2+{\sqrt {5}}}{5}}}\\\varphi \left(e^{-6\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}}}{\sqrt[{8}]{12^{3}}}}\\\varphi \left(e^{-7\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt {13+{\sqrt {7}}}}+{\sqrt {7+3{\sqrt {7}}}}}}{{\sqrt[{8}]{14^{3}}}\cdot {\sqrt[{16}]{7}}}}\\\varphi \left(e^{-8\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt {2+{\sqrt {2}}}}+{\sqrt[{8}]{128}}}{4}}\\\varphi \left(e^{-9\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {1+{\sqrt[{3}]{2+2{\sqrt {3}}}}}{3}}\\\varphi \left(e^{-10\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{64}}+{\sqrt[{4}]{80}}+{\sqrt[{4}]{81}}+{\sqrt[{4}]{100}}}}{\sqrt[{4}]{200}}}\\\varphi \left(e^{-11\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {11+{\sqrt {11}}+(5+3{\sqrt {3}}+{\sqrt {11}}+{\sqrt {33}}){\sqrt[{3}]{-44+33{\sqrt {3}}}}+(-5+3{\sqrt {3}}-{\sqrt {11}}+{\sqrt {33}}){\sqrt[{3}]{44+33{\sqrt {3}}}}}}{\sqrt[{8}]{52180524}}}\\\varphi \left(e^{-12\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{2}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}+{\sqrt[{4}]{18}}+{\sqrt[{4}]{24}}}}{2{\sqrt[{8}]{108}}}}\\\varphi \left(e^{-13\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {13+8{\sqrt {13}}+(11-6{\sqrt {3}}+{\sqrt {13}}){\sqrt[{3}]{143+78{\sqrt {3}}}}+(11+6{\sqrt {3}}+{\sqrt {13}}){\sqrt[{3}]{143-78{\sqrt {3}}}}}}{\sqrt[{4}]{19773}}}\\\varphi \left(e^{-14\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt {13+{\sqrt {7}}}}+{\sqrt {7+3{\sqrt {7}}}}+{\sqrt {10+2{\sqrt {7}}}}+{\sqrt[{8}]{28}}{\sqrt {4+{\sqrt {7}}}}}}{\sqrt[{16}]{28^{7}}}}\\\varphi \left(e^{-15\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {7+3{\sqrt {3}}+{\sqrt {5}}+{\sqrt {15}}+{\sqrt[{4}]{60}}+{\sqrt[{4}]{1500}}}}{{\sqrt[{8}]{12^{3}}}\cdot {\sqrt {5}}}}\\2\varphi \left(e^{-16\pi }\right)&=\varphi \left(e^{-4\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{1+{\sqrt {2}}}}{\sqrt[{16}]{128}}}\\\varphi \left(e^{-17\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt {2}}(1+{\sqrt[{4}]{17}})+{\sqrt[{8}]{17}}{\sqrt {5+{\sqrt {17}}}}}{\sqrt {17+17{\sqrt {17}}}}}\\2\varphi \left(e^{-20\pi }\right)&=\varphi \left(e^{-5\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt {\frac {3+2{\sqrt[{4}]{5}}}{5{\sqrt {2}}}}}\\6\varphi \left(e^{-36\pi }\right)&=3\varphi \left(e^{-9\pi }\right)+2\varphi \left(e^{-4\pi }\right)-\varphi \left(e^{-\pi }\right)+{\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt[{3}]{{\sqrt[{4}]{2}}+{\sqrt[{4}]{18}}+{\sqrt[{4}]{216}}}}\end{aligned}}}

If the reciprocal of theGelfond constant is raised to the power of the reciprocal of an odd number, then the correspondingϑ00{\displaystyle \vartheta _{00}} values orϕ{\displaystyle \phi } values can be represented in a simplified way by using thehyperbolic lemniscatic sine:

φ[exp(15π)]=π4Γ(34)1slh(152ϖ)slh(252ϖ){\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{5}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{5}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{5}}{\sqrt {2}}\,\varpi {\bigr )}}
φ[exp(17π)]=π4Γ(34)1slh(172ϖ)slh(272ϖ)slh(372ϖ){\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{7}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{7}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{7}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{7}}{\sqrt {2}}\,\varpi {\bigr )}}
φ[exp(19π)]=π4Γ(34)1slh(192ϖ)slh(292ϖ)slh(392ϖ)slh(492ϖ){\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{9}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{9}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {4}{9}}{\sqrt {2}}\,\varpi {\bigr )}}
φ[exp(111π)]=π4Γ(34)1slh(1112ϖ)slh(2112ϖ)slh(3112ϖ)slh(4112ϖ)slh(5112ϖ){\displaystyle \varphi {\bigl [}\exp(-{\tfrac {1}{11}}\pi ){\bigr ]}={\sqrt[{4}]{\pi }}\,{\Gamma \left({\tfrac {3}{4}}\right)}^{-1}\operatorname {slh} {\bigl (}{\tfrac {1}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {2}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {3}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {4}{11}}{\sqrt {2}}\,\varpi {\bigr )}\operatorname {slh} {\bigl (}{\tfrac {5}{11}}{\sqrt {2}}\,\varpi {\bigr )}}

With the letterϖ{\displaystyle \varpi } theLemniscate constant is represented.

Note that the following modular identities hold:

2φ(q4)=φ(q)+2φ2(q2)φ2(q)3φ(q9)=φ(q)+9φ4(q3)φ(q)φ3(q)35φ(q25)=φ(q5)cot(12arctan(25φ(q)φ(q5)φ2(q)φ2(q5)1+s(q)s2(q)s(q))){\displaystyle {\begin{aligned}2\varphi \left(q^{4}\right)&=\varphi (q)+{\sqrt {2\varphi ^{2}\left(q^{2}\right)-\varphi ^{2}(q)}}\\3\varphi \left(q^{9}\right)&=\varphi (q)+{\sqrt[{3}]{9{\frac {\varphi ^{4}\left(q^{3}\right)}{\varphi (q)}}-\varphi ^{3}(q)}}\\{\sqrt {5}}\varphi \left(q^{25}\right)&=\varphi \left(q^{5}\right)\cot \left({\frac {1}{2}}\arctan \left({\frac {2}{\sqrt {5}}}{\frac {\varphi (q)\varphi \left(q^{5}\right)}{\varphi ^{2}(q)-\varphi ^{2}\left(q^{5}\right)}}{\frac {1+s(q)-s^{2}(q)}{s(q)}}\right)\right)\end{aligned}}}

wheres(q)=s(eπiτ)=R(eπi/(5τ)){\displaystyle s(q)=s\left(e^{\pi i\tau }\right)=-R\left(-e^{-\pi i/(5\tau )}\right)} is theRogers–Ramanujan continued fraction:

s(q)=tan(12arctan(52φ2(q5)φ2(q)12))cot2(12arccot(52φ2(q5)φ2(q)12))5=eπi/(25τ)1eπi/(5τ)1+e2πi/(5τ)1{\displaystyle {\begin{aligned}s(q)&={\sqrt[{5}]{\tan \left({\frac {1}{2}}\arctan \left({\frac {5}{2}}{\frac {\varphi ^{2}\left(q^{5}\right)}{\varphi ^{2}(q)}}-{\frac {1}{2}}\right)\right)\cot ^{2}\left({\frac {1}{2}}\operatorname {arccot} \left({\frac {5}{2}}{\frac {\varphi ^{2}\left(q^{5}\right)}{\varphi ^{2}(q)}}-{\frac {1}{2}}\right)\right)}}\\&={\cfrac {e^{-\pi i/(25\tau )}}{1-{\cfrac {e^{-\pi i/(5\tau )}}{1+{\cfrac {e^{-2\pi i/(5\tau )}}{1-\ddots }}}}}}\end{aligned}}}

Equianharmonic values

[edit]

The mathematicianBruce Berndt found out further values[7] of the theta function:

φ(exp(3π))=π1Γ(43)3/222/3313/8φ(exp(23π))=π1Γ(43)3/222/3313/8cos(124π)φ(exp(33π))=π1Γ(43)3/222/337/8(23+1)φ(exp(43π))=π1Γ(43)3/225/3313/8(1+cos(112π))φ(exp(53π))=π1Γ(43)3/222/335/8sin(15π)(251003+25103+355+1){\displaystyle {\begin{array}{lll}\varphi \left(\exp(-{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{13/8}\\\varphi \left(\exp(-2{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{13/8}\cos({\tfrac {1}{24}}\pi )\\\varphi \left(\exp(-3{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{7/8}({\sqrt[{3}]{2}}+1)\\\varphi \left(\exp(-4{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-5/3}3^{13/8}{\Bigl (}1+{\sqrt {\cos({\tfrac {1}{12}}\pi )}}{\Bigr )}\\\varphi \left(\exp(-5{\sqrt {3}}\,\pi )\right)&=&\pi ^{-1}{\Gamma \left({\tfrac {4}{3}}\right)}^{3/2}2^{-2/3}3^{5/8}\sin({\tfrac {1}{5}}\pi )({\tfrac {2}{5}}{\sqrt[{3}]{100}}+{\tfrac {2}{5}}{\sqrt[{3}]{10}}+{\tfrac {3}{5}}{\sqrt {5}}+1)\end{array}}}

Further values

[edit]

Many values of the theta function[8] and especially of the shown phi function can be represented in terms of the gamma function:

φ(exp(2π))=π1/2Γ(98)Γ(54)1/227/8φ(exp(22π))=π1/2Γ(98)Γ(54)1/221/8(1+21)φ(exp(32π))=π1/2Γ(98)Γ(54)1/223/831/2(3+1)tan(524π)φ(exp(42π))=π1/2Γ(98)Γ(54)1/221/8(1+2224)φ(exp(52π))=π1/2Γ(98)Γ(54)1/211523/8××[5310+25(5+2+333+5+2333)(22)25105]φ(exp(6π))=π1/2Γ(524)Γ(512)1/2213/2431/8sin(512π)φ(exp(126π))=π1/2Γ(524)Γ(512)1/225/2431/8sin(524π){\displaystyle {\begin{array}{lll}\varphi \left(\exp(-{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{7/8}\\\varphi \left(\exp(-2{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{1/8}{\Bigl (}1+{\sqrt {{\sqrt {2}}-1}}{\Bigr )}\\\varphi \left(\exp(-3{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{3/8}3^{-1/2}({\sqrt {3}}+1){\sqrt {\tan({\tfrac {5}{24}}\pi )}}\\\varphi \left(\exp(-4{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}2^{-1/8}{\Bigl (}1+{\sqrt[{4}]{2{\sqrt {2}}-2}}{\Bigr )}\\\varphi \left(\exp(-5{\sqrt {2}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {9}{8}}\right){\Gamma \left({\tfrac {5}{4}}\right)}^{-1/2}{\frac {1}{15}}\,2^{3/8}\times \\&&\times {\biggl [}{\sqrt[{3}]{5}}\,{\sqrt {10+2{\sqrt {5}}}}{\biggl (}{\sqrt[{3}]{5+{\sqrt {2}}+3{\sqrt {3}}}}+{\sqrt[{3}]{5+{\sqrt {2}}-3{\sqrt {3}}}}\,{\biggr )}-{\bigl (}2-{\sqrt {2}}\,{\bigr )}{\sqrt {25-10{\sqrt {5}}}}\,{\biggr ]}\\\varphi \left(\exp(-{\sqrt {6}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {5}{24}}\right){\Gamma \left({\tfrac {5}{12}}\right)}^{-1/2}2^{-13/24}3^{-1/8}{\sqrt {\sin({\tfrac {5}{12}}\pi )}}\\\varphi \left(\exp(-{\tfrac {1}{2}}{\sqrt {6}}\,\pi )\right)&=&\pi ^{-1/2}\Gamma \left({\tfrac {5}{24}}\right){\Gamma \left({\tfrac {5}{12}}\right)}^{-1/2}2^{5/24}3^{-1/8}\sin({\tfrac {5}{24}}\pi )\end{array}}}

Nome power theorems

[edit]

Direct power theorems

[edit]

For the transformation of the nome[9] in the theta functions these formulas can be used:

θ2(q2)=122[θ3(q)2θ4(q)2]{\displaystyle \theta _{2}(q^{2})={\tfrac {1}{2}}{\sqrt {2[\theta _{3}(q)^{2}-\theta _{4}(q)^{2}]}}}
θ3(q2)=122[θ3(q)2+θ4(q)2]{\displaystyle \theta _{3}(q^{2})={\tfrac {1}{2}}{\sqrt {2[\theta _{3}(q)^{2}+\theta _{4}(q)^{2}]}}}
θ4(q2)=θ4(q)θ3(q){\displaystyle \theta _{4}(q^{2})={\sqrt {\theta _{4}(q)\theta _{3}(q)}}}

The squares of the three theta zero-value functions with the square function as the inner function are also formed in the pattern of thePythagorean triples according to the Jacobi Identity. Furthermore, those transformations are valid:

θ3(q4)=12θ3(q)+12θ4(q){\displaystyle \theta _{3}(q^{4})={\tfrac {1}{2}}\theta _{3}(q)+{\tfrac {1}{2}}\theta _{4}(q)}

These formulas can be used to compute the theta values of the cube of the nome:

27θ3(q3)818θ3(q3)4θ3(q)4θ3(q)8=8θ3(q3)2θ3(q)2[2θ4(q)4θ3(q)4]{\displaystyle 27\,\theta _{3}(q^{3})^{8}-18\,\theta _{3}(q^{3})^{4}\theta _{3}(q)^{4}-\,\theta _{3}(q)^{8}=8\,\theta _{3}(q^{3})^{2}\theta _{3}(q)^{2}[2\,\theta _{4}(q)^{4}-\theta _{3}(q)^{4}]}
27θ4(q3)818θ4(q3)4θ4(q)4θ4(q)8=8θ4(q3)2θ4(q)2[2θ3(q)4θ4(q)4]{\displaystyle 27\,\theta _{4}(q^{3})^{8}-18\,\theta _{4}(q^{3})^{4}\theta _{4}(q)^{4}-\,\theta _{4}(q)^{8}=8\,\theta _{4}(q^{3})^{2}\theta _{4}(q)^{2}[2\,\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]}

And the following formulas can be used to compute the theta values of the fifth power of the nome:

[θ3(q)2θ3(q5)2][5θ3(q5)2θ3(q)2]5=256θ3(q5)2θ3(q)2θ4(q)4[θ3(q)4θ4(q)4]{\displaystyle [\theta _{3}(q)^{2}-\theta _{3}(q^{5})^{2}][5\,\theta _{3}(q^{5})^{2}-\theta _{3}(q)^{2}]^{5}=256\,\theta _{3}(q^{5})^{2}\theta _{3}(q)^{2}\theta _{4}(q)^{4}[\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]}
[θ4(q5)2θ4(q)2][5θ4(q5)2θ4(q)2]5=256θ4(q5)2θ4(q)2θ3(q)4[θ3(q)4θ4(q)4]{\displaystyle [\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}][5\,\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}]^{5}=256\,\theta _{4}(q^{5})^{2}\theta _{4}(q)^{2}\theta _{3}(q)^{4}[\theta _{3}(q)^{4}-\theta _{4}(q)^{4}]}

Transformation at the cube root of the nome

[edit]

The formulas for the theta Nullwert function values from the cube root of the elliptic nome are obtained by contrasting the two real solutions of the corresponding quartic equations:

[θ3(q1/3)2θ3(q)23θ3(q3)2θ3(q)2]2=44[2θ2(q)2θ4(q)2θ3(q)4]2/3{\displaystyle {\biggl [}{\frac {\theta _{3}(q^{1/3})^{2}}{\theta _{3}(q)^{2}}}-{\frac {3\,\theta _{3}(q^{3})^{2}}{\theta _{3}(q)^{2}}}{\biggr ]}^{2}=4-4{\biggl [}{\frac {2\,\theta _{2}(q)^{2}\theta _{4}(q)^{2}}{\theta _{3}(q)^{4}}}{\biggr ]}^{2/3}}
[3θ4(q3)2θ4(q)2θ4(q1/3)2θ4(q)2]2=4+4[2θ2(q)2θ3(q)2θ4(q)4]2/3{\displaystyle {\biggl [}{\frac {3\,\theta _{4}(q^{3})^{2}}{\theta _{4}(q)^{2}}}-{\frac {\theta _{4}(q^{1/3})^{2}}{\theta _{4}(q)^{2}}}{\biggr ]}^{2}=4+4{\biggl [}{\frac {2\,\theta _{2}(q)^{2}\theta _{3}(q)^{2}}{\theta _{4}(q)^{4}}}{\biggr ]}^{2/3}}

Transformation at the fifth root of the nome

[edit]

TheRogers-Ramanujan continued fraction can be defined in terms of theJacobi theta function in the following way:

R(q)=tan{12arctan[12θ4(q)22θ4(q5)2]}1/5tan{12arccot[12θ4(q)22θ4(q5)2]}2/5{\displaystyle R(q)=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{1/5}\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{2/5}}
R(q2)=tan{12arctan[12θ4(q)22θ4(q5)2]}2/5cot{12arccot[12θ4(q)22θ4(q5)2]}1/5{\displaystyle R(q^{2})=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{2/5}\cot {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {1}{2}}-{\frac {\theta _{4}(q)^{2}}{2\,\theta _{4}(q^{5})^{2}}}{\biggr ]}{\biggr \}}^{1/5}}
R(q2)=tan{12arctan[θ3(q)22θ3(q5)212]}2/5tan{12arccot[θ3(q)22θ3(q5)212]}1/5{\displaystyle R(q^{2})=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{2/5}\tan {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{1/5}}

The alternating Rogers-Ramanujan continued fraction function S(q) has the following two identities:

S(q)=R(q4)R(q2)R(q)=tan{12arctan[θ3(q)22θ3(q5)212]}1/5cot{12arccot[θ3(q)22θ3(q5)212]}2/5{\displaystyle S(q)={\frac {R(q^{4})}{R(q^{2})R(q)}}=\tan {\biggl \{}{\frac {1}{2}}\arctan {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{1/5}\cot {\biggl \{}{\frac {1}{2}}\operatorname {arccot} {\biggl [}{\frac {\theta _{3}(q)^{2}}{2\,\theta _{3}(q^{5})^{2}}}-{\frac {1}{2}}{\biggr ]}{\biggr \}}^{2/5}}

The theta function values from the fifth root of the nome can be represented as a rational combination of the continued fractions R and S and the theta function values from the fifth power of the nome and the nome itself. The following four equations are valid for all values q between 0 and 1:

θ3(q1/5)θ3(q5)1=1S(q)[S(q)2+R(q2)][1+R(q2)S(q)]{\displaystyle {\frac {\theta _{3}(q^{1/5})}{\theta _{3}(q^{5})}}-1={\frac {1}{S(q)}}{\bigl [}S(q)^{2}+R(q^{2}){\bigr ]}{\bigl [}1+R(q^{2})S(q){\bigr ]}}
1θ4(q1/5)θ4(q5)=1R(q)[R(q2)+R(q)2][1R(q2)R(q)]{\displaystyle 1-{\frac {\theta _{4}(q^{1/5})}{\theta _{4}(q^{5})}}={\frac {1}{R(q)}}{\bigl [}R(q^{2})+R(q)^{2}{\bigr ]}{\bigl [}1-R(q^{2})R(q){\bigr ]}}
θ3(q1/5)2θ3(q)2=[θ3(q)2θ3(q5)2][1+1R(q2)S(q)+R(q2)S(q)+1R(q2)2+R(q2)2+1S(q)S(q)]{\displaystyle \theta _{3}(q^{1/5})^{2}-\theta _{3}(q)^{2}={\bigl [}\theta _{3}(q)^{2}-\theta _{3}(q^{5})^{2}{\bigr ]}{\biggl [}1+{\frac {1}{R(q^{2})S(q)}}+R(q^{2})S(q)+{\frac {1}{R(q^{2})^{2}}}+R(q^{2})^{2}+{\frac {1}{S(q)}}-S(q){\biggr ]}}
θ4(q)2θ4(q1/5)2=[θ4(q5)2θ4(q)2][11R(q2)R(q)R(q2)R(q)+1R(q2)2+R(q2)21R(q)+R(q)]{\displaystyle \theta _{4}(q)^{2}-\theta _{4}(q^{1/5})^{2}={\bigl [}\theta _{4}(q^{5})^{2}-\theta _{4}(q)^{2}{\bigr ]}{\biggl [}1-{\frac {1}{R(q^{2})R(q)}}-R(q^{2})R(q)+{\frac {1}{R(q^{2})^{2}}}+R(q^{2})^{2}-{\frac {1}{R(q)}}+R(q){\biggr ]}}

Modulus dependent theorems

[edit]

In combination with the elliptic modulus, the following formulas can be displayed:

These are the formulas for the square of the elliptic nome:

θ4[q(k)]=θ4[q(k)2]1k28{\displaystyle \theta _{4}[q(k)]=\theta _{4}[q(k)^{2}]{\sqrt[{8}]{1-k^{2}}}}
θ4[q(k)2]=θ3[q(k)]1k28{\displaystyle \theta _{4}[q(k)^{2}]=\theta _{3}[q(k)]{\sqrt[{8}]{1-k^{2}}}}
θ3[q(k)2]=θ3[q(k)]cos[12arcsin(k)]{\displaystyle \theta _{3}[q(k)^{2}]=\theta _{3}[q(k)]\cos[{\tfrac {1}{2}}\arcsin(k)]}

And this is an efficient formula for the cube of the nome:

θ4q{tan[12arctan(t3)]}3=θ4q{tan[12arctan(t3)]}31/2(2t4t2+1t2+2+t2+1)1/2{\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(t^{3}){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(t^{3}){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {t^{4}-t^{2}+1}}-t^{2}+2}}+{\sqrt {t^{2}+1}}\,{\bigr )}^{1/2}}

For all real valuestR{\displaystyle t\in \mathbb {R} } the now mentioned formula is valid.

And for this formula two examples shall be given:

First calculation example with the valuet=1{\displaystyle t=1} inserted:

θ4q{tan[12arctan(1)]}3=θ4q{tan[12arctan(1)]}31/2(3+2)1/2{\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(1){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(1){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {3}}+{\sqrt {2}}\,{\bigr )}^{1/2}}

θ4[exp(32π)]=θ4[exp(2π)]31/2(3+2)1/2{\displaystyle \theta _{4}{\bigl [}\exp(-3{\sqrt {2}}\,\pi ){\bigr ]}=\theta _{4}{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}\,3^{-1/2}{\bigl (}{\sqrt {3}}+{\sqrt {2}}\,{\bigr )}^{1/2}}

Second calculation example with the valuet=Φ2{\displaystyle t=\Phi ^{-2}} inserted:

θ4q{tan[12arctan(Φ6)]}3=θ4q{tan[12arctan(Φ6)]}31/2(2Φ8Φ4+1Φ4+2+Φ4+1)1/2{\displaystyle \theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ^{-6}){\bigr ]}{\bigr \}}^{3}{\biggr \rangle }=\theta _{4}{\biggl \langle }q{\bigl \{}\tan {\bigl [}{\tfrac {1}{2}}\arctan(\Phi ^{-6}){\bigr ]}{\bigr \}}{\biggr \rangle }\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {\Phi ^{-8}-\Phi ^{-4}+1}}-\Phi ^{-4}+2}}+{\sqrt {\Phi ^{-4}+1}}\,{\bigr )}^{1/2}}

θ4[exp(310π)]=θ4[exp(10π)]31/2(2Φ8Φ4+1Φ4+2+Φ4+1)1/2{\displaystyle \theta _{4}{\bigl [}\exp(-3{\sqrt {10}}\,\pi ){\bigr ]}=\theta _{4}{\bigl [}\exp(-{\sqrt {10}}\,\pi ){\bigr ]}\,3^{-1/2}{\bigl (}{\sqrt {2{\sqrt {\Phi ^{-8}-\Phi ^{-4}+1}}-\Phi ^{-4}+2}}+{\sqrt {\Phi ^{-4}+1}}\,{\bigr )}^{1/2}}

The constantΦ{\displaystyle \Phi } represents theGolden ratio numberΦ=12(5+1){\displaystyle \Phi ={\tfrac {1}{2}}({\sqrt {5}}+1)} exactly.

Some series identities

[edit]

Sums with theta function in the result

[edit]

The infinite sum[10][11] of the reciprocals ofFibonacci numbers with odd indices has the identity:

n=11F2n1=52n=12(Φ2)n1/21+(Φ2)2n1=54a=2(Φ2)a1/21+(Φ2)2a1={\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}={\frac {\sqrt {5}}{2}}\,\sum _{n=1}^{\infty }{\frac {2(\Phi ^{-2})^{n-1/2}}{1+(\Phi ^{-2})^{2n-1}}}={\frac {\sqrt {5}}{4}}\sum _{a=-\infty }^{\infty }{\frac {2(\Phi ^{-2})^{a-1/2}}{1+(\Phi ^{-2})^{2a-1}}}=}
=54θ2(Φ2)2=58[θ3(Φ1)2θ4(Φ1)2]{\displaystyle ={\frac {\sqrt {5}}{4}}\,\theta _{2}(\Phi ^{-2})^{2}={\frac {\sqrt {5}}{8}}{\bigl [}\theta _{3}(\Phi ^{-1})^{2}-\theta _{4}(\Phi ^{-1})^{2}{\bigr ]}}

By not using the theta function expression, following identity between two sums can be formulated:

n=11F2n1=54[n=12Φ(2n1)2/2]2{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}={\frac {\sqrt {5}}{4}}\,{\biggl [}\sum _{n=1}^{\infty }2\,\Phi ^{-(2n-1)^{2}/2}{\biggr ]}^{2}}
n=11F2n1=1.82451515740692456814215840626732817332{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{2n-1}}}=1.82451515740692456814215840626732817332\ldots }

Also in this caseΦ=12(5+1){\displaystyle \Phi ={\tfrac {1}{2}}({\sqrt {5}}+1)} isGolden ratio number again.

Infinite sum of the reciprocals of the Fibonacci number squares:

n=11Fn2=524[2θ2(Φ2)4θ3(Φ2)4+1]=524[θ3(Φ2)42θ4(Φ2)4+1]{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}^{2}}}={\frac {5}{24}}{\bigl [}2\,\theta _{2}(\Phi ^{-2})^{4}-\theta _{3}(\Phi ^{-2})^{4}+1{\bigr ]}={\frac {5}{24}}{\bigl [}\theta _{3}(\Phi ^{-2})^{4}-2\,\theta _{4}(\Phi ^{-2})^{4}+1{\bigr ]}}

Infinite sum of the reciprocals of thePell numbers with odd indices:

n=11P2n1=12θ2[(21)2]2=122[θ3(21)2θ4(21)2]{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{P_{2n-1}}}={\frac {1}{\sqrt {2}}}\,\theta _{2}{\bigl [}({\sqrt {2}}-1)^{2}{\bigr ]}^{2}={\frac {1}{2{\sqrt {2}}}}{\bigl [}\theta _{3}({\sqrt {2}}-1)^{2}-\theta _{4}({\sqrt {2}}-1)^{2}{\bigr ]}}

Sums with theta function in the summand

[edit]

The next two series identities were proved byIstván Mező:[12]

θ42(q)=iq14k=q2k2kθ1(2k12ilnq,q),θ42(q)=k=q2k2θ4(klnqi,q).{\displaystyle {\begin{aligned}\theta _{4}^{2}(q)&=iq^{\frac {1}{4}}\sum _{k=-\infty }^{\infty }q^{2k^{2}-k}\theta _{1}\left({\frac {2k-1}{2i}}\ln q,q\right),\\[6pt]\theta _{4}^{2}(q)&=\sum _{k=-\infty }^{\infty }q^{2k^{2}}\theta _{4}\left({\frac {k\ln q}{i}},q\right).\end{aligned}}}

These relations hold for all0 <q < 1. Specializing the values ofq, we have the next parameter free sums

πeπ21Γ2(34)=ik=eπ(k2k2)θ1(iπ2(2k1),eπ){\displaystyle {\sqrt {\frac {\pi {\sqrt {e^{\pi }}}}{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}=i\sum _{k=-\infty }^{\infty }e^{\pi \left(k-2k^{2}\right)}\theta _{1}\left({\frac {i\pi }{2}}(2k-1),e^{-\pi }\right)}
π21Γ2(34)=k=θ4(ikπ,eπ)e2πk2{\displaystyle {\sqrt {\frac {\pi }{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}=\sum _{k=-\infty }^{\infty }{\frac {\theta _{4}\left(ik\pi ,e^{-\pi }\right)}{e^{2\pi k^{2}}}}}

Zeros of the Jacobi theta functions

[edit]

All zeros of the Jacobi theta functions are simple zeros and are given by the following:

ϑ(z;τ)=ϑ00(z;τ)=0z=m+nτ+12+τ2ϑ11(z;τ)=0z=m+nτϑ10(z;τ)=0z=m+nτ+12ϑ01(z;τ)=0z=m+nτ+τ2{\displaystyle {\begin{aligned}\vartheta (z;\tau )=\vartheta _{00}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}+{\frac {\tau }{2}}\\[3pt]\vartheta _{11}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau \\[3pt]\vartheta _{10}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}\\[3pt]\vartheta _{01}(z;\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {\tau }{2}}\end{aligned}}}

wherem,n are arbitrary integers.

Relation to the Riemann zeta function

[edit]

The relation

ϑ(0;1τ)=(iτ)12ϑ(0;τ){\displaystyle \vartheta \left(0;-{\frac {1}{\tau }}\right)=\left(-i\tau \right)^{\frac {1}{2}}\vartheta (0;\tau )}

was used byRiemann to prove the functional equation for theRiemann zeta function, by means of theMellin transform

Γ(s2)πs2ζ(s)=120(ϑ(0;it)1)ts2dtt{\displaystyle \Gamma \left({\frac {s}{2}}\right)\pi ^{-{\frac {s}{2}}}\zeta (s)={\frac {1}{2}}\int _{0}^{\infty }{\bigl (}\vartheta (0;it)-1{\bigr )}t^{\frac {s}{2}}{\frac {\mathrm {d} t}{t}}}

which can be shown to be invariant under substitution ofs by1 −s. The corresponding integral forz ≠ 0 is given in the article on theHurwitz zeta function.

Relation to the Weierstrass elliptic function

[edit]

The theta function was used by Jacobi to construct (in a form adapted to easy calculation)his elliptic functions as the quotients of the above four theta functions, and could have been used by him to constructWeierstrass's elliptic functions also, since

(z;τ)=(logϑ11(z;τ))+c{\displaystyle \wp (z;\tau )=-{\big (}\log \vartheta _{11}(z;\tau ){\big )}''+c}

where the second derivative is with respect toz and the constantc is defined so that theLaurent expansion of℘(z) atz = 0 has zero constant term.

Relation to theq-gamma function

[edit]

The fourth theta function – and thus the others too – is intimately connected to theJacksonq-gamma function via the relation[13]

(Γq2(x)Γq2(1x))1=q2x(1x)(q2;q2)3(q21)θ4(12i(12x)logq,1q).{\displaystyle \left(\Gamma _{q^{2}}(x)\Gamma _{q^{2}}(1-x)\right)^{-1}={\frac {q^{2x(1-x)}}{\left(q^{-2};q^{-2}\right)_{\infty }^{3}\left(q^{2}-1\right)}}\theta _{4}\left({\frac {1}{2i}}(1-2x)\log q,{\frac {1}{q}}\right).}

Relations to Dedekind eta function

[edit]

Letη(τ) be theDedekind eta function, and the argument of the theta function as thenomeq =eπiτ. Then,

θ2(q)=ϑ10(0;τ)=2η2(2τ)η(τ),θ3(q)=ϑ00(0;τ)=η5(τ)η2(12τ)η2(2τ)=η2(12(τ+1))η(τ+1),θ4(q)=ϑ01(0;τ)=η2(12τ)η(τ),{\displaystyle {\begin{aligned}\theta _{2}(q)=\vartheta _{10}(0;\tau )&={\frac {2\eta ^{2}(2\tau )}{\eta (\tau )}},\\[3pt]\theta _{3}(q)=\vartheta _{00}(0;\tau )&={\frac {\eta ^{5}(\tau )}{\eta ^{2}\left({\frac {1}{2}}\tau \right)\eta ^{2}(2\tau )}}={\frac {\eta ^{2}\left({\frac {1}{2}}(\tau +1)\right)}{\eta (\tau +1)}},\\[3pt]\theta _{4}(q)=\vartheta _{01}(0;\tau )&={\frac {\eta ^{2}\left({\frac {1}{2}}\tau \right)}{\eta (\tau )}},\end{aligned}}}

and,

θ2(q)θ3(q)θ4(q)=2η3(τ).{\displaystyle \theta _{2}(q)\,\theta _{3}(q)\,\theta _{4}(q)=2\eta ^{3}(\tau ).}

See also theWeber modular functions.

Elliptic modulus

[edit]

Theelliptic modulus is

k(τ)=ϑ10(0;τ)2ϑ00(0;τ)2{\displaystyle k(\tau )={\frac {\vartheta _{10}(0;\tau )^{2}}{\vartheta _{00}(0;\tau )^{2}}}}

and the complementary elliptic modulus is

k(τ)=ϑ01(0;τ)2ϑ00(0;τ)2{\displaystyle k'(\tau )={\frac {\vartheta _{01}(0;\tau )^{2}}{\vartheta _{00}(0;\tau )^{2}}}}

Derivatives of theta functions

[edit]

These are two identical definitions of the complete elliptic integral of the second kind:

E(k)=0π/21k2sin(φ)2dφ{\displaystyle E(k)=\int _{0}^{\pi /2}{\sqrt {1-k^{2}\sin(\varphi )^{2}}}d\varphi }
E(k)=π2a=0[(2a)!]2(12a)16a(a!)4k2a{\displaystyle E(k)={\frac {\pi }{2}}\sum _{a=0}^{\infty }{\frac {[(2a)!]^{2}}{(1-2a)16^{a}(a!)^{4}}}k^{2a}}

The derivatives of the Theta Nullwert functions have these MacLaurin series:

θ2(x)=ddxθ2(x)=12x3/4+n=112(2n+1)2x(2n1)(2n+3)/4{\displaystyle \theta _{2}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{2}(x)={\frac {1}{2}}x^{-3/4}+\sum _{n=1}^{\infty }{\frac {1}{2}}(2n+1)^{2}x^{(2n-1)(2n+3)/4}}
θ3(x)=ddxθ3(x)=2+n=12(n+1)2xn(n+2){\displaystyle \theta _{3}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{3}(x)=2+\sum _{n=1}^{\infty }2(n+1)^{2}x^{n(n+2)}}
θ4(x)=ddxθ4(x)=2+n=12(n+1)2(1)n+1xn(n+2){\displaystyle \theta _{4}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x)=-2+\sum _{n=1}^{\infty }2(n+1)^{2}(-1)^{n+1}x^{n(n+2)}}

The derivatives of theta zero-value functions[14] are as follows:

θ2(x)=ddxθ2(x)=12πxθ2(x)θ3(x)2E[θ2(x)2θ3(x)2]{\displaystyle \theta _{2}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{2}(x)={\frac {1}{2\pi x}}\theta _{2}(x)\theta _{3}(x)^{2}E{\biggl [}{\frac {\theta _{2}(x)^{2}}{\theta _{3}(x)^{2}}}{\biggr ]}}
θ3(x)=ddxθ3(x)=θ3(x)[θ3(x)2+θ4(x)2]{12πxE[θ3(x)2θ4(x)2θ3(x)2+θ4(x)2]θ4(x)24x}{\displaystyle \theta _{3}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{3}(x)=\theta _{3}(x){\bigl [}\theta _{3}(x)^{2}+\theta _{4}(x)^{2}{\bigr ]}{\biggl \{}{\frac {1}{2\pi x}}E{\biggl [}{\frac {\theta _{3}(x)^{2}-\theta _{4}(x)^{2}}{\theta _{3}(x)^{2}+\theta _{4}(x)^{2}}}{\biggr ]}-{\frac {\theta _{4}(x)^{2}}{4\,x}}{\biggr \}}}
θ4(x)=ddxθ4(x)=θ4(x)[θ3(x)2+θ4(x)2]{12πxE[θ3(x)2θ4(x)2θ3(x)2+θ4(x)2]θ3(x)24x}{\displaystyle \theta _{4}'(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x)=\theta _{4}(x){\bigl [}\theta _{3}(x)^{2}+\theta _{4}(x)^{2}{\bigr ]}{\biggl \{}{\frac {1}{2\pi x}}E{\biggl [}{\frac {\theta _{3}(x)^{2}-\theta _{4}(x)^{2}}{\theta _{3}(x)^{2}+\theta _{4}(x)^{2}}}{\biggr ]}-{\frac {\theta _{3}(x)^{2}}{4\,x}}{\biggr \}}}

The two last mentioned formulas are valid for all real numbers of the real definition interval:1<x<1xR{\displaystyle -1<x<1\,\cap \,x\in \mathbb {R} }

And these two last named theta derivative functions are related to each other in this way:

ϑ4(x)[ddxϑ3(x)]ϑ3(x)[ddxθ4(x)]=14xθ3(x)θ4(x)[θ3(x)4θ4(x)4]{\displaystyle \vartheta _{4}(x){\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}\,\vartheta _{3}(x){\biggr ]}-\vartheta _{3}(x){\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}\,\theta _{4}(x){\biggr ]}={\frac {1}{4\,x}}\,\theta _{3}(x)\,\theta _{4}(x){\bigl [}\theta _{3}(x)^{4}-\theta _{4}(x)^{4}{\bigr ]}}

The derivatives of the quotients from two of the three theta functions mentioned here always have a rational relationship to those three functions:

ddxθ2(x)θ3(x)=θ2(x)θ4(x)44xθ3(x){\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{2}(x)}{\theta _{3}(x)}}={\frac {\theta _{2}(x)\,\theta _{4}(x)^{4}}{4\,x\,\theta _{3}(x)}}}
ddxθ2(x)θ4(x)=θ2(x)θ3(x)44xθ4(x){\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{2}(x)}{\theta _{4}(x)}}={\frac {\theta _{2}(x)\,\theta _{3}(x)^{4}}{4\,x\,\theta _{4}(x)}}}
ddxθ3(x)θ4(x)=θ3(x)5θ3(x)θ4(x)44xθ4(x){\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {\theta _{3}(x)}{\theta _{4}(x)}}={\frac {\theta _{3}(x)^{5}-\theta _{3}(x)\,\theta _{4}(x)^{4}}{4\,x\,\theta _{4}(x)}}}

For the derivation of these derivation formulas see the articlesNome (mathematics) andModular lambda function!

Integrals of theta functions

[edit]

For the theta functions these integrals[15] are valid:

01θ2(x)dx=k=4(2k+1)2+4=πtanh(π)3.129881{\displaystyle \int _{0}^{1}\theta _{2}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {4}{(2k+1)^{2}+4}}=\pi \tanh(\pi )\approx 3.129881}
01θ3(x)dx=k=1k2+1=πcoth(π)3.153348{\displaystyle \int _{0}^{1}\theta _{3}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {1}{k^{2}+1}}=\pi \coth(\pi )\approx 3.153348}
01θ4(x)dx=k=(1)kk2+1=πcsch(π)0.272029{\displaystyle \int _{0}^{1}\theta _{4}(x)\,\mathrm {d} x=\sum _{k=-\infty }^{\infty }{\frac {(-1)^{k}}{k^{2}+1}}=\pi \,\operatorname {csch} (\pi )\approx 0.272029}

The final results now shown are based on the general Cauchy sum formulas.

A solution to the heat equation

[edit]

The Jacobi theta function is thefundamental solution of the one-dimensionalheat equation with spatially periodic boundary conditions.[16] Takingz =x to be real andτ =it witht real and positive, we can write

ϑ(x;it)=1+2n=1exp(πn2t)cos(2πnx){\displaystyle \vartheta (x;it)=1+2\sum _{n=1}^{\infty }\exp \left(-\pi n^{2}t\right)\cos(2\pi nx)}

which solves the heat equation

tϑ(x;it)=14π2x2ϑ(x;it).{\displaystyle {\frac {\partial }{\partial t}}\vartheta (x;it)={\frac {1}{4\pi }}{\frac {\partial ^{2}}{\partial x^{2}}}\vartheta (x;it).}

This theta-function solution is 1-periodic inx, and ast → 0 it approaches the periodicdelta function, orDirac comb, in the sense ofdistributions

limt0ϑ(x;it)=n=δ(xn){\displaystyle \lim _{t\to 0}\vartheta (x;it)=\sum _{n=-\infty }^{\infty }\delta (x-n)}.

General solutions of the spatially periodic initial value problem for the heat equation may be obtained by convolving the initial data att = 0 with the theta function.

Relation to the Heisenberg group

[edit]

The Jacobi theta function is invariant under the action of a discrete subgroup of theHeisenberg group. This invariance is presented in the article on thetheta representation of the Heisenberg group.

Generalizations

[edit]

IfF is aquadratic form inn variables, then the theta function associated withF is

θF(z)=mZne2πizF(m){\displaystyle \theta _{F}(z)=\sum _{m\in \mathbb {Z} ^{n}}e^{2\pi izF(m)}}

with the sum extending over thelattice of integersZn{\displaystyle \mathbb {Z} ^{n}}. This theta function is amodular form of weightn/2 (on an appropriately defined subgroup) of themodular group. In the Fourier expansion,

θ^F(z)=k=0RF(k)e2πikz,{\displaystyle {\hat {\theta }}_{F}(z)=\sum _{k=0}^{\infty }R_{F}(k)e^{2\pi ikz},}

the numbersRF(k) are called therepresentation numbers of the form.

Theta series of a Dirichlet character

[edit]

Forχ a primitiveDirichlet character moduloq andν =1 −χ(−1)/2 then

θχ(z)=12n=χ(n)nνe2iπn2z{\displaystyle \theta _{\chi }(z)={\frac {1}{2}}\sum _{n=-\infty }^{\infty }\chi (n)n^{\nu }e^{2i\pi n^{2}z}}

is a weight1/2 +ν modular form of level4q2 and character

χ(d)(1d)ν,{\displaystyle \chi (d)\left({\frac {-1}{d}}\right)^{\nu },}

which means[17]

θχ(az+bcz+d)=χ(d)(1d)ν(θ1(az+bcz+d)θ1(z))1+2νθχ(z){\displaystyle \theta _{\chi }\left({\frac {az+b}{cz+d}}\right)=\chi (d)\left({\frac {-1}{d}}\right)^{\nu }\left({\frac {\theta _{1}\left({\frac {az+b}{cz+d}}\right)}{\theta _{1}(z)}}\right)^{1+2\nu }\theta _{\chi }(z)}

whenever

a,b,c,dZ4,adbc=1,c0mod4q2.{\displaystyle a,b,c,d\in \mathbb {Z} ^{4},ad-bc=1,c\equiv 0{\bmod {4}}q^{2}.}

Ramanujan theta function

[edit]
Further information:Ramanujan theta function andmock theta function

Riemann theta function

[edit]

Let

Hn={FM(n,C)|F=FT,ImF>0}{\displaystyle \mathbb {H} _{n}=\left\{F\in M(n,\mathbb {C} )\,{\big |}\,F=F^{\mathsf {T}}\,,\,\operatorname {Im} F>0\right\}}

be the set ofsymmetric squarematrices whose imaginary part ispositive definite.Hn{\displaystyle \mathbb {H} _{n}} is called theSiegel upper half-space and is the multi-dimensional analog of theupper half-plane. Then-dimensional analogue of themodular group is thesymplectic groupSp(2n,Z{\displaystyle \mathbb {Z} }); forn = 1,Sp(2,Z{\displaystyle \mathbb {Z} }) = SL(2,Z{\displaystyle \mathbb {Z} }). Then-dimensional analogue of thecongruence subgroups is played by

ker{Sp(2n,Z)Sp(2n,Z/kZ)}.{\displaystyle \ker {\big \{}\operatorname {Sp} (2n,\mathbb {Z} )\to \operatorname {Sp} (2n,\mathbb {Z} /k\mathbb {Z} ){\big \}}.}

Then, givenτHn{\displaystyle \mathbb {H} _{n}}, theRiemann theta function is defined as

θ(z,τ)=mZnexp(2πi(12mTτm+mTz)).{\displaystyle \theta (z,\tau )=\sum _{m\in \mathbb {Z} ^{n}}\exp \left(2\pi i\left({\tfrac {1}{2}}m^{\mathsf {T}}\tau m+m^{\mathsf {T}}z\right)\right).}

Here,zCn{\displaystyle \mathbb {C} ^{n}} is ann-dimensional complex vector, and the superscriptT denotes thetranspose. The Jacobi theta function is then a special case, withn = 1 andτH{\displaystyle \mathbb {H} } whereH{\displaystyle \mathbb {H} } is theupper half-plane. One major application of the Riemann theta function is that it allows one to give explicit formulas for meromorphic functions on compactRiemann surfaces, as well as other auxiliary objects that figure prominently in their function theory, by takingτ to be the period matrix with respect to a canonical basis for its firsthomology group.

The Riemann theta converges absolutely and uniformly on compact subsets ofCn×Hn{\displaystyle \mathbb {C} ^{n}\times \mathbb {H} _{n}}.

The functional equation is

θ(z+a+τb,τ)=exp(2πi(bTz12bTτb))θ(z,τ){\displaystyle \theta (z+a+\tau b,\tau )=\exp \left(2\pi i\left(-b^{\mathsf {T}}z-{\tfrac {1}{2}}b^{\mathsf {T}}\tau b\right)\right)\theta (z,\tau )}

which holds for all vectorsa,bZn{\displaystyle \mathbb {Z} ^{n}}, and for allzCn{\displaystyle \mathbb {C} ^{n}} andτHn{\displaystyle \mathbb {H} _{n}}.

Poincaré series

[edit]

ThePoincaré series generalizes the theta series to automorphic forms with respect to arbitraryFuchsian groups.

Derivation of the theta values

[edit]

Identity of the Euler beta function

[edit]

In the following, three important theta function values are to be derived as examples:

This is how theEuler beta function is defined in its reduced form:

β(x)=Γ(x)2Γ(2x){\displaystyle \beta (x)={\frac {\Gamma (x)^{2}}{\Gamma (2x)}}}

In general, for all natural numbersnN{\displaystyle n\in \mathbb {N} } this formula of the Euler beta function is valid:

41/(n+2)n+2csc(πn+2)β[n2(n+2)]=01xn+2+1dx{\displaystyle {\frac {4^{-1/(n+2)}}{n+2}}\csc {\bigl (}{\frac {\pi }{n+2}}{\bigr )}\beta {\biggl [}{\frac {n}{2(n+2)}}{\biggr ]}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{n+2}+1}}}\,\mathrm {d} x}

Exemplary elliptic integrals

[edit]

In the following someElliptic Integral Singular Values[18] are derived:

The ensuing function has the following lemniscatically elliptic antiderivative:

1x4+1=ddx12F[2arctan(x);122]{\displaystyle {\frac {1}{\sqrt {x^{4}+1}}}={\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {1}{2}}F{\biggl [}2\arctan(x);{\frac {1}{2}}{\sqrt {2}}\,{\biggr ]}}

For the valuen=2{\displaystyle n=2} this identity appears:

142csc(π4)β(14)=01x4+1dx={12F[2arctan(x);122]}x=0x=={\displaystyle {\frac {1}{4{\sqrt {2}}}}\csc {\bigl (}{\frac {\pi }{4}}{\bigr )}\beta {\bigl (}{\frac {1}{4}}{\bigr )}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{4}+1}}}\,\mathrm {d} x={\biggl \{}{\color {blue}{\frac {1}{2}}F{\biggl [}2\arctan(x);{\frac {1}{2}}{\sqrt {2}}\,{\biggr ]}}{\biggr \}}_{x=0}^{x=\infty }=}
=12F(π;122)=K(122){\displaystyle ={\frac {1}{2}}F{\bigl (}\pi ;{\frac {1}{2}}{\sqrt {2}}{\bigr )}=K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}}

This result follows from that equation chain:

K(122)=14β(14){\displaystyle {\color {ForestGreen}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}={\frac {1}{4}}\beta {\bigl (}{\frac {1}{4}}{\bigr )}}}

The following function has the following equianharmonic elliptic antiderivative:

1x6+1=ddx16274F[2arctan(34xx2+1);14(6+2)]{\displaystyle {\frac {1}{\sqrt {x^{6}+1}}}={\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {1}{6}}{\sqrt[{4}]{27}}F{\biggl [}2\arctan {\biggl (}{\frac {{\sqrt[{4}]{3}}\,x}{\sqrt {x^{2}+1}}}{\biggr )};{\frac {1}{4}}({\sqrt {6}}+{\sqrt {2}}){\biggr ]}}

For the valuen=4{\displaystyle n=4} that identity appears:

1623csc(π6)β(13)=01x6+1dx={16274F[2arctan(34xx2+1);14(6+2)]}x=0x=={\displaystyle {\frac {1}{6{\sqrt[{3}]{2}}}}\csc {\bigl (}{\frac {\pi }{6}}{\bigr )}\beta {\bigl (}{\frac {1}{3}}{\bigr )}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{6}+1}}}\,\mathrm {d} x={\biggl \{}{\color {blue}{\frac {1}{6}}{\sqrt[{4}]{27}}F{\biggl [}2\arctan {\biggl (}{\frac {{\sqrt[{4}]{3}}\,x}{\sqrt {x^{2}+1}}}{\biggr )};{\frac {1}{4}}({\sqrt {6}}+{\sqrt {2}}){\biggr ]}}{\biggr \}}_{x=0}^{x=\infty }=}
=16274F[2arctan(34);14(6+2)]=29274K[14(6+2)]=2334K[14(62)]{\displaystyle ={\frac {1}{6}}{\sqrt[{4}]{27}}F{\bigl [}2\arctan({\sqrt[{4}]{3}});{\frac {1}{4}}({\sqrt {6}}+{\sqrt {2}}){\bigr ]}={\frac {2}{9}}{\sqrt[{4}]{27}}K{\bigl [}{\frac {1}{4}}({\sqrt {6}}+{\sqrt {2}}){\bigr ]}={\frac {2}{3}}{\sqrt[{4}]{3}}K{\bigl [}{\frac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}}

This result follows from that equation chain:

K[14(62)]=122334β(13){\displaystyle {\color {ForestGreen}K{\bigl [}{\frac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}={\frac {1}{2{\sqrt[{3}]{2}}{\sqrt[{4}]{3}}}}\beta {\bigl (}{\frac {1}{3}}{\bigr )}}}

And the following function has the following elliptic antiderivative:

1x8+1={\displaystyle {\frac {1}{\sqrt {x^{8}+1}}}=}
=ddx14sec(π8)F{2arctan[2cos(π/8)xx4+2x2+1x2+1];224sin(π8)}+14sec(π8)F{arcsin[2cos(π/8)xx2+1];tan(π8)}{\displaystyle ={\frac {\mathrm {d} }{\mathrm {d} x}}\,{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}2\arctan {\biggl [}{\frac {2\cos(\pi /8)\,x}{{\sqrt {x^{4}+{\sqrt {2}}\,x^{2}+1}}-x^{2}+1}}{\biggr ]};2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}+{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}\arcsin {\biggl [}{\frac {2\cos(\pi /8)\,x}{x^{2}+1}}{\biggr ]};\tan {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}}

For the valuen=6{\displaystyle n=6} the following identity appears:

1824csc(π8)β(38)=01x8+1dx={\displaystyle {\frac {1}{8{\sqrt[{4}]{2}}}}\csc {\bigl (}{\frac {\pi }{8}}{\bigr )}\beta {\bigl (}{\frac {3}{8}}{\bigr )}=\int _{0}^{\infty }{\frac {1}{\sqrt {x^{8}+1}}}\,\mathrm {d} x=}
=14sec(π8)F{2arctan[2cos(π/8)xx4+2x2+1x2+1];224sin(π8)}+14sec(π8)F{arcsin[2cos(π/8)xx2+1];tan(π8)}x=0x=={\displaystyle ={\biggl \langle }{\color {blue}{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}2\arctan {\biggl [}{\frac {2\cos(\pi /8)\,x}{{\sqrt {x^{4}+{\sqrt {2}}\,x^{2}+1}}-x^{2}+1}}{\biggr ]};2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}+{\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\biggl \{}\arcsin {\biggl [}{\frac {2\cos(\pi /8)\,x}{x^{2}+1}}{\biggr ]};\tan {\bigl (}{\frac {\pi }{8}}{\bigr )}{\biggr \}}}{\biggr \rangle }_{x=0}^{x=\infty }=}
=14sec(π8)F[π;224sin(π8)]=12sec(π8)K(222)=2sin(π8)K(21){\displaystyle ={\frac {1}{4}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}F{\bigl [}\pi ;2{\sqrt[{4}]{2}}\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}{\bigr ]}={\frac {1}{2}}\sec {\bigl (}{\frac {\pi }{8}}{\bigr )}K({\sqrt {2{\sqrt {2}}-2}}{\bigr )}=2\sin {\bigl (}{\frac {\pi }{8}}{\bigr )}K({\sqrt {2}}-1)}

This result follows from that equation chain:

K(21)=1824(2+1)β(38){\displaystyle {\color {ForestGreen}K({\sqrt {2}}-1)={\frac {1}{8}}{\sqrt[{4}]{2}}\,({\sqrt {2}}+1)\,\beta {\bigl (}{\frac {3}{8}}{\bigr )}}}

Combination of the integral identities with the nome

[edit]

The elliptic nome function has these important values:

q(122)=exp(π){\displaystyle q({\tfrac {1}{2}}{\sqrt {2}})=\exp(-\pi )}
q[14(62)]=exp(3π){\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})]=\exp(-{\sqrt {3}}\,\pi )}
q(21)=exp(2π){\displaystyle q({\sqrt {2}}-1)=\exp(-{\sqrt {2}}\,\pi )}

For the proof of the correctness of these nome values, see the articleNome (mathematics)!

On the basis of these integral identities and the above-mentionedDefinition and identities to the theta functions in the same section of this article, exemplary theta zero values shall be determined now:

θ3[q(k)]=2π1K(k){\displaystyle \theta _{3}[q(k)]={\sqrt {2\pi ^{-1}K(k)}}}
θ3[exp(π)]=θ3[q(122)]=2π1K(122)=21/2π1/2β(14)1/2=21/4π4Γ(34)1{\displaystyle \theta _{3}[\exp(-\pi )]=\theta _{3}[q({\tfrac {1}{2}}{\sqrt {2}})]={\sqrt {2\pi ^{-1}K({\tfrac {1}{2}}{\sqrt {2}})}}=2^{-1/2}\pi ^{-1/2}\beta ({\tfrac {1}{4}})^{1/2}=2^{-1/4}{\sqrt[{4}]{\pi }}\,{\Gamma {\bigl (}{\tfrac {3}{4}}{\bigr )}}^{-1}}
θ3[exp(3π)]=θ3{q[14(62)]}=2π1K[14(62)]=21/631/8π1/2β(13)1/2{\displaystyle \theta _{3}[\exp(-{\sqrt {3}}\,\pi )]=\theta _{3}{\bigl \{}q{\bigl [}{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}{\bigr \}}={\sqrt {2\pi ^{-1}K{\bigl [}{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}}){\bigr ]}}}=2^{-1/6}3^{-1/8}\pi ^{-1/2}\beta ({\tfrac {1}{3}})^{1/2}}
θ3[exp(2π)]=θ3[q(21)]=2π1K(21)=21/8cos(18π)π1/2β(38)1/2{\displaystyle \theta _{3}[\exp(-{\sqrt {2}}\,\pi )]=\theta _{3}[q({\sqrt {2}}-1)]={\sqrt {2\pi ^{-1}K({\sqrt {2}}-1)}}=2^{-1/8}\cos({\tfrac {1}{8}}\pi )\,\pi ^{-1/2}\beta ({\tfrac {3}{8}})^{1/2}}
θ4[q(k)]=1k242π1K(k){\displaystyle \theta _{4}[q(k)]={\sqrt[{4}]{1-k^{2}}}\,{\sqrt {2\pi ^{-1}K(k)}}}
θ4[exp(2π)]=θ4[q(21)]=22242π1K(21)=21/4cos(18π)1/2π1/2β(38)1/2{\displaystyle \theta _{4}[\exp(-{\sqrt {2}}\,\pi )]=\theta _{4}[q({\sqrt {2}}-1)]={\sqrt[{4}]{2{\sqrt {2}}-2}}\,{\sqrt {2\pi ^{-1}K({\sqrt {2}}-1)}}=2^{-1/4}\cos({\tfrac {1}{8}}\pi )^{1/2}\,\pi ^{-1/2}\beta ({\tfrac {3}{8}})^{1/2}}

Partition sequences and Pochhammer products

[edit]

Regular partition number sequence

[edit]

The regular partition sequenceP(n){\displaystyle P(n)} itself indicates the number of ways in which a positiveinteger numbern{\displaystyle n} can be split into positive integer summands. For the numbersn=1{\displaystyle n=1} ton=5{\displaystyle n=5}, the associated partition numbersP{\displaystyle P} with all associated number partitions are listed in the following table:

Example values of P(n) and associated number partitions
nP(n)paying partitions
01() empty partition/empty sum
11(1)
22(1+1), (2)
33(1+1+1), (1+2), (3)
45(1+1+1+1), (1+1+2), (2+2), (1+3), (4)
57(1+1+1+1+1), (1+1+1+2), (1+2+2), (1+1+3), (2+3), (1+4), (5)

The generating function of the regular partition number sequence can be represented via Pochhammer product in the following way:

k=0P(k)xk=1(x;x)=θ3(x)1/6θ4(x)2/3[θ3(x)4θ4(x)416x]1/24{\displaystyle \sum _{k=0}^{\infty }P(k)x^{k}={\frac {1}{(x;x)_{\infty }}}=\theta _{3}(x)^{-1/6}\theta _{4}(x)^{-2/3}{\biggl [}{\frac {\theta _{3}(x)^{4}-\theta _{4}(x)^{4}}{16\,x}}{\biggr ]}^{-1/24}}

The summandization of the now mentionedPochhammer product is described by thePentagonal number theorem in this way:

(x;x)=1+n=1[xFn(2n1)xKr(2n1)+xFn(2n)+xKr(2n)]{\displaystyle (x;x)_{\infty }=1+\sum _{n=1}^{\infty }{\bigl [}-x^{{\text{Fn}}(2n-1)}-x^{{\text{Kr}}(2n-1)}+x^{{\text{Fn}}(2n)}+x^{{\text{Kr}}(2n)}{\bigr ]}}

The following basic definitions apply to thepentagonal numbers and the card house numbers:

Fn(z)=12z(3z1){\displaystyle {\text{Fn}}(z)={\tfrac {1}{2}}z(3z-1)}
Kr(z)=12z(3z+1){\displaystyle {\text{Kr}}(z)={\tfrac {1}{2}}z(3z+1)}

As a further application[19] one obtains a formula for the third power of the Euler product:

(x;x)3=n=1(1xn)3=m=0(1)m(2m+1)xm(m+1)/2{\displaystyle (x;x)^{3}=\prod _{n=1}^{\infty }(1-x^{n})^{3}=\sum _{m=0}^{\infty }(-1)^{m}(2m+1)x^{m(m+1)/2}}

Strict partition number sequence

[edit]

And the strict partition sequenceQ(n){\displaystyle Q(n)} indicates the number of ways in which such a positive integer numbern{\displaystyle n} can be splitted into positive integer summands such that each summand appears at most once[20] and no summand value occurs repeatedly. Exactly the same sequence[21] is also generated if in the partition only odd summands are included, but these odd summands may occur more than once. Both representations for the strict partition number sequence are compared in the following table:

Example values of Q(n) and associated number partitions
nQ(n)Number partitions without repeated summandsNumber partitions with only odd addends
01() empty partition/empty sum() empty partition/empty sum
11(1)(1)
21(2)(1+1)
32(1+2), (3)(1+1+1), (3)
42(1+3), (4)(1+1+1+1), (1+3)
53(2+3), (1+4), (5)(1+1+1+1+1), (1+1+3), (5)
64(1+2+3), (2+4), (1+5), (6)(1+1+1+1+1+1), (1+1+1+3), (3+3), (1+5)
75(1+2+4), (3+4), (2+5), (1+6), (7)(1+1+1+1+1+1+1), (1+1+1+1+3), (1+3+3), (1+1+5), (7)
86(1+3+4), (1+2+5), (3+5), (2+6), (1+7), (8)(1+1+1+1+1+1+1+1), (1+1+1+1+1+3), (1+1+3+3), (1+1+1+ 5), (3+5), (1+7)

The generating function of the strict partition number sequence can be represented using Pochhammer's product:

k=0Q(k)xk=1(x;x2)=θ3(x)1/6θ4(x)1/3[θ3(x)4θ4(x)416x]1/24{\displaystyle \sum _{k=0}^{\infty }Q(k)x^{k}={\frac {1}{(x;x^{2})_{\infty }}}=\theta _{3}(x)^{1/6}\theta _{4}(x)^{-1/3}{\biggl [}{\frac {\theta _{3}(x)^{4}-\theta _{4}(x)^{4}}{16\,x}}{\biggr ]}^{1/24}}

Overpartition number sequence

[edit]

TheMaclaurin series for the reciprocal of the functionϑ01 has the numbers ofover partition sequence as coefficients with a positive sign:[22]

1θ4(x)=n=11+xn1xn=k=0P¯(k)xk{\displaystyle {\frac {1}{\theta _{4}(x)}}=\prod _{n=1}^{\infty }{\frac {1+x^{n}}{1-x^{n}}}=\sum _{k=0}^{\infty }{\overline {P}}(k)x^{k}}
1θ4(x)=1+2x+4x2+8x3+14x4+24x5+40x6+64x7+100x8+154x9+232x10+{\displaystyle {\frac {1}{\theta _{4}(x)}}=1+2x+4x^{2}+8x^{3}+14x^{4}+24x^{5}+40x^{6}+64x^{7}+100x^{8}+154x^{9}+232x^{10}+\dots }

If, for a given numberk{\displaystyle k}, all partitions are set up in such a way that the summand size never increases, and all those summands that do not have a summand of the same size to the left of themselves can be marked for each partition of this type, then it will be the resulting number[23] of the marked partitions depending onk{\displaystyle k} by the overpartition functionP¯(k){\displaystyle {\overline {P}}(k)} .

First example:

P¯(4)=14{\displaystyle {\overline {P}}(4)=14}

These 14 possibilities of partition markings exist for the sum 4:

(4), (4), (3+1), (3+1), (3+1), (3+1), (2+2), (2+2), (2+1+1), (2+1+1), (2+1+1), (2+1+1), (1+1+1+1), (1+1+1+1)

Second example:

P¯(5)=24{\displaystyle {\overline {P}}(5)=24}

These 24 possibilities of partition markings exist for the sum 5:

(5), (5), (4+1), (4+1), (4+1), (4+1), (3+2), (3+2), (3+2), (3+2), (3+1+1), (3+1+1), (3+1+1), (3+1+1), (2+2+1), (2+2+1), (2+2+1), (2+2+1),

(2+1+1+1), (2+1+1+1), (2+1+1+1), (2+1+1+1), (1+1+1+1+1), (1+1+1+1+1)

Relations of the partition number sequences to each other

[edit]

In the Online Encyclopedia of Integer Sequences (OEIS), the sequence of regular partition numbersP(n){\displaystyle P(n)} is under the code A000041, the sequence of strict partitions isQ(n){\displaystyle Q(n)} under the code A000009 and the sequence of superpartitionsP¯(n){\displaystyle {\overline {P}}(n)} under the code A015128. All parent partitions from indexn=1{\displaystyle n=1} are even.

The sequence of superpartitionsP¯(n){\displaystyle {\overline {P}}(n)} can be written with the regular partition sequence P[24] and the strict partition sequence Q[25] can be generated like this:

P¯(n)=k=0nP(nk)Q(k){\displaystyle {\overline {P}}(n)=\sum _{k=0}^{n}P(n-k)Q(k)}

In the following table of sequences of numbers, this formula should be used as an example:

nP(n)Q(n)P¯(n){\displaystyle {\overline {P}}(n)}
0111 = 1*1
1112 = 1 * 1 + 1 * 1
2214 = 2 * 1 + 1 * 1 + 1 * 1
3328 = 3 * 1 + 2 * 1 + 1 * 1 + 1 * 2
45214 = 5 * 1 + 3 * 1 + 2 * 1 + 1 * 2 + 1 * 2
57324 = 7 * 1 + 5 * 1 + 3 * 1 + 2 * 2 + 1 * 2 + 1 * 3

Related to this property, the following combination of two series of sums can also be set up via the functionϑ01:

θ4(x)=[k=0P(k)xk]1[k=0Q(k)xk]1{\displaystyle \theta _{4}(x)={\biggl [}\sum _{k=0}^{\infty }P(k)x^{k}{\biggr ]}^{-1}{\biggl [}\sum _{k=0}^{\infty }Q(k)x^{k}{\biggr ]}^{-1}}

Notes

[edit]
  1. ^See e.g.https://dlmf.nist.gov/20.1. Note that this is, in general, not equivalent to the usual interpretation(ez)α=eαLogez{\displaystyle (e^{z})^{\alpha }=e^{\alpha \operatorname {Log} e^{z}}} whenz{\displaystyle z} is outside the stripπ<Imzπ{\displaystyle -\pi <\operatorname {Im} z\leq \pi }. Here,Log{\displaystyle \operatorname {Log} } denotes the principal branch of thecomplex logarithm.
  2. ^θ1(q)=0{\displaystyle \theta _{1}(q)=0} for allqC{\displaystyle q\in \mathbb {C} } with|q|<1{\displaystyle |q|<1}.

References

[edit]
  1. ^Tyurin, Andrey N. (30 October 2002). "Quantization, Classical and Quantum Field Theory and Theta-Functions".arXiv:math/0210466v1.
  2. ^Chang, Der-Chen (2011).Heat Kernels for Elliptic and Sub-elliptic Operators. Birkhäuser. p. 7.
  3. ^Tata Lectures on Theta I. Modern Birkhäuser Classics. Boston, MA: Birkhäuser Boston. 2007. p. 4.doi:10.1007/978-0-8176-4577-9.ISBN 978-0-8176-4572-4.
  4. ^Bagis, Nikolaos D (19 December 2022). "On the Complete Evaluation of Jacobi Theta Functions".arXiv:1503.01141 [math.GM].
  5. ^Bagis, Nikolaos D (31 July 2019). "Evaluations of Series Related to Jacobi Elliptic Functions".arXiv:1803.09445 [math.NT].
  6. ^Yi, Jinhee (2004)."Theta-function identities and the explicit formulas for theta-function and their applications".Journal of Mathematical Analysis and Applications.292 (2):381–400.doi:10.1016/j.jmaa.2003.12.009.
  7. ^Berndt, Bruce C; Rebák, Örs (9 January 2022)."Explicit Values for Ramanujan's Theta Function ϕ(q)".Hardy-Ramanujan Journal.44: 8923.arXiv:2112.11882.doi:10.46298/hrj.2022.8923.S2CID 245851672.
  8. ^Yi, Jinhee (15 April 2004)."Theta-function identities and the explicit formulas for theta-function and their applications".Journal of Mathematical Analysis and Applications.292 (2):381–400.doi:10.1016/j.jmaa.2003.12.009.
  9. ^Andreas Dieckmann:Table of Infinite Products Infinite Sums Infinite Series, Elliptic Theta. Physikalisches Institut Universität Bonn, Abruf am 1. Oktober 2021.
  10. ^Landau (1899) zitiert nachBorwein, Page 94, Exercise 3.
  11. ^"Number-theoretical, combinatorial and integer functions – mpmath 1.1.0 documentation". Retrieved2021-07-18.
  12. ^Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper'sq-trigonometric functions",Proceedings of the American Mathematical Society,141 (7):2401–2410,doi:10.1090/s0002-9939-2013-11576-5
  13. ^Mező, István (2012)."Aq-Raabe formula and an integral of the fourth Jacobi theta function".Journal of Number Theory.133 (2):692–704.doi:10.1016/j.jnt.2012.08.025.hdl:2437/166217.
  14. ^Weisstein, Eric W."Elliptic Alpha Function".MathWorld.
  15. ^"integration - Curious integrals for Jacobi Theta Functions $\int_0^1 \vartheta_n(0,q)dq$". 2022-08-13.
  16. ^Ohyama, Yousuke (1995)."Differential relations of theta functions".Osaka Journal of Mathematics.32 (2):431–450.ISSN 0030-6126.
  17. ^Shimura, On modular forms of half integral weight
  18. ^"Elliptic Integral Singular Value".msu.edu. Retrieved2023-04-07.
  19. ^Ramanujan's theta-function identities involving Lambert series
  20. ^"code golf - Strict partitions of a positive integer". Retrieved2022-03-09.
  21. ^"A000009 - OEIS". 2022-03-09.
  22. ^Mahlburg, Karl (2004). "The overpartition function modulo small powers of 2".Discrete Mathematics.286 (3):263–267.doi:10.1016/j.disc.2004.03.014.
  23. ^Kim, Byungchan (28 April 2009)."Elsevier Enhanced Reader".Discrete Mathematics.309 (8):2528–2532.doi:10.1016/j.disc.2008.05.007.
  24. ^Eric W. Weisstein (2022-03-11)."Partition Function P".
  25. ^Eric W. Weisstein (2022-03-11)."Partition Function Q".

Further reading

[edit]

Harry Rauch with Hershel M. Farkas: Theta functions with applications to Riemann Surfaces, Williams and Wilkins, Baltimore MD 1974,ISBN 0-683-07196-3.

  • Charles Hermite: Sur la résolution de l'Équation du cinquiéme degré Comptes rendus, C. R. Acad. Sci. Paris, Nr. 11, March 1858.

External links

[edit]

This article incorporates material from Integral representations of Jacobi theta functions onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Theta_function&oldid=1289386476#Jacobi_theta_function"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp