Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Iron meteorite

From Wikipedia, the free encyclopedia
Meteorite composed of iron-nickel alloy called meteoric iron
Iron meteorite
— Type —
Tamentit Iron Meteorite, found in 1864 in theSahara,[1] weighing about 500 kg (1,100 lb). On display atVulcania park in France.
Compositional typeIron
Parent body>50
Composition>95%iron,nickel, andcobalt; 5–25% nickel
TKWc. 500 short tons (450 t)
Widmanstätten pattern as seen on an etched and polished slice of an olivine-free portion of theSeymchan meteorite.[a] Scale unknown.

Iron meteorites, also calledsiderites orferrous meteorites, are a type ofmeteorite that consist overwhelmingly of aniron–nickel alloy known asmeteoric iron that usually consists of twomineral phases:kamacite andtaenite. Most iron meteorites originate fromcores ofplanetesimals,[3] with the exception of theIIE iron meteorite group.[4]

The iron found in iron meteorites was one of the earliest sources of usable iron available tohumans, due to the malleability and ductility of the meteoric iron,[5] before the development ofsmelting that signaled the beginning of theIron Age.

Occurrence

[edit]

Although they are fairly rare compared to thestony meteorites, comprising only about 5.7% of witnessed falls, iron meteorites have historically been heavily over-represented inmeteorite collections.[6] This is due to several factors:

  • They are easily recognized as unusual, as opposed to stony meteorites. Modern-day searches for meteorites in deserts and Antarctica yield a much more representative sample of meteorites overall.
  • They are much more resistant to weathering.
  • They are much more likely to survive atmospheric entry, and are more resistant to the resultingablation. Hence, they are more likely to be found as large pieces.
  • They can be found even when buried by use of surface metal-detecting equipment, due to their metallic composition.

Because they are also denser than stony meteorites, iron meteorites also account for almost 90% of the mass of all known meteorites, about 500 tons.[7] All the largest known meteorites are of this type, including the largest—theHoba meteorite.

Origin

[edit]

Iron meteorites have been linked toM-type asteroids because both have similar spectral characteristics in the visible and near-infrared. Iron meteorites are thought to be the fragments of the cores of larger ancientasteroids that have been shattered by impacts.[8] The heat released from the radioactive decay of the short-lived nuclides26Al and60Fe is considered as a plausible cause for the melting and differentiation of their parent bodies in the early Solar System.[9][10] Melting produced from the heat of impacts is another cause of melting and differentiation.[11] TheIIE iron meteorites may be a notable exception, in that they probably originate from the crust ofS-type asteroid6 Hebe.

Chemical and isotope analysis indicates that at least about 50 distinct parent bodies were involved. This implies that there were once at least this many large,differentiated, asteroids in the asteroid belt – many more than today.

Composition

[edit]

The overwhelming bulk of these meteorites consists of the FeNi-alloyskamacite andtaenite. Minor minerals, when occurring, often form rounded nodules oftroilite orgraphite, surrounded byschreibersite andcohenite.Schreibersite andtroilite also occur as plate shaped inclusions, which show up on cut surfaces as cm-long and mm-thick lamellae. Thetroilite plates are calledReichenbach lamellae.[12]

The chemical composition is dominated by the elementsFe,Ni andCo, which make up more than 95%.Ni is always present; the concentration is nearly always higher than 5% and may be as high as about 25%.[13] A significant percentage of nickel can be used in the field to distinguish meteoritic irons from human-made iron products, which usually contain lower amounts of Ni, but it is not enough to prove meteoritic origin.

Use

[edit]
For usage of the metal of iron meteorites, seeMeteoric iron.

Iron meteorites were historically used for theirmeteoric iron, which was forged into cultural objects, tools or weapons. With the advent of smelting and the beginning of theIron Age the importance of iron meteorites as a resource decreased, at least in those cultures that developed those techniques. In Ancient Egypt and other civilizations before theIron Age, iron was as valuable as gold, since both came from meteorites, for exampleTutankhamun's meteoric iron dagger.[14] The Inuit used theCape York meteorite for a much longer time. Iron meteorites themselves were sometimes used unaltered as collectibles or even religious symbols (e.g.Clackamas worshiping theWillamette meteorite).[15] Today iron meteorites are prized collectibles for academic institutions and individuals. Some are also tourist attractions as in the case of theHoba meteorite.

Classification

[edit]

Two classifications are in use: the classic structural classification and the newer chemical classification.[16]

Structural classification

[edit]

The older structural classification is based on the presence or absence of theWidmanstätten pattern, which can be assessed from the appearance of polished cross-sections that have been etched with acid. This is connected with the relative abundance of nickel to iron. The categories are:

Chemical classification

[edit]

A newer chemical classification scheme based on the proportions of the trace elementsGa,Ge andIr separates the iron meteorites into classes corresponding to distinctasteroid parent bodies.[19] This classification is based on diagrams that plotnickel content against different trace elements (e.g. Ga, Ge and Ir). The different iron meteorite groups appear as data point clusters.[3][20]

There were originally four of these groups designated by the Roman numerals I, II, III, IV. When more chemical data became available these were split, e.g. Group IV was split intoIVA and IVB meteorites. Even later some groups got joined again when intermediate meteorites were discovered, e.g. IIIA and IIIB were combined into the IIIAB meteorites.[21]

In 2006 iron meteorites were classified into 13 groups (one for uncategorized irons):[3]

  • IAB
    • IA: Medium and coarse octahedrites, 6.4–8.7% Ni, 55–100 ppm Ga, 190–520 ppm Ge, 0.6–5.5 ppm Ir, Ge-Ni correlation negative.
    • IB: Ataxites and medium octahedrites, 8.7–25% Ni, 11–55 ppm Ga, 25–190 ppm Ge, 0.3–2 ppm Ir, Ge-Ni correlation negative.
  • IC: 6.1–6.8% Ni. The Ni concentrations are positively correlated with As (4–9 μg/g), Au (0.6–1.0 μg/g) and P (0.17–0.40%) and negatively correlated with Ga (54–42 μg/g), Ir (9–0.07 μg/g) and W (2.4–0.8 μg/g).
  • IIAB
    • IIA: Hexahedrites, 5.3–5.7% Ni, 57–62 ppm Ga, 170–185 ppm Ge, 2–60 ppm Ir.
    • IIB: Coarsest octahedrites, 5.7–6.4% Ni, 446–59 pm Ga, 107–183 ppm Ge, 0.01–0.5 ppm Ir, Ge-Ni correlation negative.
  • IIC: Plessitic octahedrites, 9.3–11.5% Ni, 37–39 ppm Ga, 88–114 ppm Ge, 4–11 ppm Ir, Ge-Ni correlation positive
  • IID: Fine to medium octahedrites, 9.8–11.3%Ni, 70–83 ppm Ga, 82–98 ppm Ge, 3.5–18 ppm Ir, Ge-Ni correlation positive
  • IIE: octahedrites of various coarseness, 7.5–9.7% Ni, 21–28 ppm Ga, 60–75 ppm Ge, 1–8 ppm Ir, Ge-Ni correlation absent
  • IIIAB: Medium octahedrites, 7.1–10.5% Ni, 16–23 ppm Ga, 27–47 ppm Ge, 0.01–19 ppm Ir
  • IIICD: Ataxites to fine octahedrites, 10–23% Ni, 1.5–27 ppm Ga, 1.4–70 ppm Ge, 0.02–0.55 ppm Ir
  • IIIE: Coarse octahedrites, 8.2–9.0% Ni, 17–19 ppm Ga, 3–37 ppm Ge, 0.05–6 ppm Ir, Ge-Ni correlation absent
  • IIIF: Medium to coarse octahedrites, 6.8–7.8% Ni,6.3–7.2 ppm Ga, 0.7–1.1 ppm Ge, 1.3–7.9 ppm Ir, Ge–Ni correlation absent
  • IVA: Fine octahedrites, 7.4–9.4% Ni, 1.6–2.4 ppm Ga, 0.09–0.14 ppm Ge, 0.4–4 ppm Ir, Ge-Ni correlation positive
  • IVB: Ataxites, 16–26% Ni, 0.17–0.27 ppm Ga, 0,03–0,07 ppm Ge, 13–38 ppm Ir, Ge–Ni correlation positive
  • Ungrouped meteorites. This is actually quite a large collection (about 15% of the total) of over 100 meteorites that do not fit into any of the larger classes above, and come from about 50 distinct parent bodies.

Additional groups and grouplets are discussed in the scientific literature:

Magmatic and nonmagmatic (primitive) irons

[edit]

The iron meteorites were previously divided into two classes: magmatic irons and non magmatic or primitive irons. Now this definition is deprecated.

Iron classGroups
Nonmagmatic or primitive iron meteoritesIAB,IIE
Magmatic iron meteoritesIC, IIAB, IIC, IID, IIF,IIG, IIIAB, IIIE, IIIF, IVA,IVB

Stony–iron meteorites

[edit]

There are also specific categories for mixed-composition meteorites, in which iron and 'stony' materials are combined.

Gallery

[edit]

See also

[edit]

Notes

[edit]
  1. ^The Seymchan meteorite was initially considered a group IIE iron meteorite, but as new fragments were discovered it was reclassified as a stony-iron meteorite from the palassite main group.[2]

References

[edit]
  1. ^"Tamentit".Meteoritical Bulletin Database.Lunar and Planetary Institute. 5 September 2024. Retrieved2024-09-11.
  2. ^van Niekerk, D.; et al. (August 2007)."Seymchan: A Main Group Pallasite - Not an Iron Meteorite".Meteoritics & Planetary Science.42 (S8): A154.doi:10.1111/j.1945-5100.2007.tb00601.x.
  3. ^abcM. K. Weisberg; T. J. McCoy, A. N. Krot (2006). "Systematics and Evaluation of Meteorite Classification/s". In D. S. Lauretta; H. Y. McSween, Jr. (eds.).Meteorites and the early Solar System II(PDF). Tucson: University of Arizona Press. pp. 19–52.ISBN 978-0816525621. Retrieved15 December 2012.
  4. ^Wasson, John T. (January 2017)."Formation of non-magmatic iron-meteorite group IIE".Geochimica et Cosmochimica Acta.197:396–416.Bibcode:2017GeCoA.197..396W.doi:10.1016/j.gca.2016.09.043.
  5. ^"Meteoric Iron- Properties and Use".www.tf.uni-kiel.de. Retrieved5 June 2021.
  6. ^Emiliani, Cesare (1992).Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press. p. 152.ISBN 978-0-521-40949-0.
  7. ^David J. Darling (2004).The Universal Book of Astronomy: From the Andromeda Galaxy to the Zone of Avoidance. Wiley. p. 260.ISBN 978-0-471-26569-6.
  8. ^Goldstein, Joseph (October 1967). "The iron meteorites, their thermal history and parent bodies".Geochimica et Cosmochimica Acta.31 (10):1733–1770.Bibcode:1967GeCoA..31.1733G.doi:10.1016/0016-7037(67)90120-2.
  9. ^Sahijpal, S.; Soni, P.; Gagan, G. (2007)."Numerical simulations of the differentiation of accreting planetesimals with26Al and60Fe as the heat sources".Meteoritics & Planetary Science.42 (9):1529–1548.Bibcode:2007M&PS...42.1529S.doi:10.1111/j.1945-5100.2007.tb00589.x.
  10. ^Gupta, G.; Sahijpal, S. (2010)."Differentiation of Vesta and the parent bodies of other achondrites".J. Geophys. Res. Planets.115 (E8).Bibcode:2010JGRE..115.8001G.doi:10.1029/2009JE003525.
  11. ^Wasson, J. T. (1969). The chemical classification of iron meteorites—III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm.Geochimica et Cosmochimica Acta,33(7), 859–876.
  12. ^J. G. Burke,Cosmic Debris: Meteorites in History. University of California Press, 1986.
  13. ^J. T. Wasson,Meteorites: Classification and Properties. Springer-Verlag, 1974.
  14. ^"Iron came from Space before the Iron Age".atlasobscura.com. 22 December 2017. Retrieved1 June 2021.
  15. ^"Meteorites in History and Religion". Retrieved13 December 2012.
  16. ^Vagn F. Buchwald,Handbook of Iron Meteorites. University of California Press, 1975.
  17. ^James H. Shirley, Rhodes Whitmore Fairbridge,Encyclopedia of planetary sciences, Springer, 1997.ISBN 978-0-412-06951-2
  18. ^Geochimica et Cosmochimica Acta, Volume 45, Ed. 9–12
  19. ^John T. Wasson: Meteorites. Springer-Verlag 1974.
  20. ^Scott, Edward R. D.; Wasson, John T. (1 January 1975). "Classification and properties of iron meteorites".Reviews of Geophysics.13 (4): 527.Bibcode:1975RvGSP..13..527S.doi:10.1029/RG013i004p00527.
  21. ^McSween, Harry Y. (1999).Meteorites and their parent planets (Sec. ed.). Cambridge: Cambridge Univ. Press.ISBN 978-0521587518.
  22. ^Wasson, John T.; Choe, Won-Hie (31 July 2009). "The IIG iron meteorites: Probable formation in the IIAB core".Geochimica et Cosmochimica Acta.73 (16):4879–4890.Bibcode:2009GeCoA..73.4879W.doi:10.1016/j.gca.2009.05.062.
  23. ^Chinga meteorite[permanent dead link] at Meteoritical Bulletin Database.

External links

[edit]
Wikimedia Commons has media related toIron meteorites.
Meteorite...
Classification
Bytype,class,
clan,group
andgrouplet
Chondrite
Achondrite
Primitive
Asteroidal
Lunar
Martian
Iron
Stony-iron
Structural
Obsolete terms
Mineralogy
andpetrology
Lists
Portals:
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Iron_meteorite&oldid=1268861333"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp