Spacecraft engine that generates thrust by generating a jet of ions
This article is about a kind of reaction engine. For the air propulsion concept, seeionocraft.
The 2.3kWNSTAR ion thruster developed byNASA for theDeep Space 1 spacecraft during a hot fire test at theJet Propulsion Laboratory (1999)NEXIS ion engine test (2005)A prototype of a xenon ion engine being tested at NASA's Jet Propulsion Laboratory (2005)
Electrostatic thruster ions are accelerated by theCoulomb force along theelectric field direction. Temporarily stored electrons are reinjected by aneutralizer in the cloud of ions after it has passed through the electrostatic grid, so the gas becomes neutral again and can freely disperse in space without any further electrical interaction with the thruster.
By contrast,electromagnetic thruster ions are accelerated by theLorentz force to accelerate all species (free electrons as well as positive and negative ions) in the same direction whatever theirelectric charge, and are specifically referred to asplasma propulsion engines, where the electric field is not in the direction of the acceleration.[1][2]
Ion thrusters in operation typically consume 1–7 kW ofpower, haveexhaust velocities around 20–50 km/s (Isp 2000–5000s), and possess thrusts of 25–250 mN and apropulsive efficiency 65–80%[3][4] though experimental versions have achieved 100 kW (130 hp), 5 N (1.1 lbf).[5]
TheDeep Space 1 spacecraft, powered by an ion thruster, changed velocity by 4.3 km/s (2.7 mi/s) while consuming less than 74 kg (163 lb) ofxenon. TheDawn spacecraft broke the record, with avelocity change of 11.5 km/s (7.1 mi/s), though it was only half as efficient, requiring 425 kg (937 lb) of xenon.[6]
Applications include control of the orientation and position of orbitingsatellites (some satellites have dozens of low-power ion thrusters), use as a main propulsion engine for low-mass robotic space vehicles (such asDeep Space 1 andDawn),[3][4] and serving as propulsion thrusters forcrewed spacecraft andspace stations (e.g.Tiangong).[7]
Ion thrust engines are generally practical only in the vacuum of space as the engine's minuscule thrust cannot overcome any significant air resistance without radical design changes, as may be found in the 'Atmosphere Breathing Electric Propulsion' concept. The Massachusetts Institute of Technology (MIT) has created designs that are able to fly for short distances and at low speeds at ground level, using ultra-light materials and low drag aerofoils. An ion engine cannot usually generate sufficient thrust to achieve initialliftoff from any celestial body with significant surfacegravity. For these reasons, spacecraft must rely on other methods such as conventional chemical rockets ornon-rocket launch technologies to reach their initialorbit.
The first person who wrote a paper introducing the idea publicly wasKonstantin Tsiolkovsky in 1911.[8] The technique was recommended for near-vacuum conditions at high altitude, but thrust was demonstrated with ionized air streams at atmospheric pressure. The idea appeared again inHermann Oberth'sWege zur Raumschiffahrt (1929;Ways to Spaceflight),[9] where he explained his thoughts on the mass savings of electric propulsion, predicted its use inspacecraft propulsion andattitude control, and advocated electrostatic acceleration of charged gasses.[10]
A working ion thruster was built byHarold R. Kaufman in 1959 at theNASAGlenn Research Center facilities. It was similar to a gridded electrostatic ion thruster and usedmercury for propellant. Suborbital tests were conducted during the 1960s and in 1964, and the engine was sent into a suborbital flight aboard theSpace Electric Rocket Test-1 (SERT-1).[11][12] It successfully operated for the planned 31 minutes before falling to Earth.[13] This test was followed by an orbital test, SERT-2, in 1970.[14][15]
On the 12 October 1964Voskhod 1 carried out tests with ion thrusters that had been attached to the exterior of the spacecraft.[16]
An alternate form of electric propulsion, theHall-effect thruster, was studied independently in theUnited States and theSoviet Union in the 1950s and 1960s. Hall-effect thrusters operated on Soviet satellites from 1972 until the late 1990s, mainly used for satellite stabilization in north–south and in east–west directions. Some 100–200 engines completed missions on Soviet andRussian satellites.[17] Soviet thruster design was introduced to the West in 1992 after a team of electric propulsion specialists, under the support of theBallistic Missile Defense Organization, visited Soviet laboratories.
Ion thrusters use beams ofions (electrically charged atoms or molecules) to createthrust in accordance withmomentum conservation. The method of accelerating the ions varies, but all designs take advantage of thecharge/mass ratio of the ions. This ratio means that relatively small potential differences can create high exhaust velocities. This reduces the amount ofreaction mass or propellant required, but increases the amount of specificpower required compared tochemical rockets. Ion thrusters are therefore able to achieve highspecific impulses. The drawback of the low thrust is low acceleration because the mass of the electric power unit directly correlates with the amount of power. This low thrust makes ion thrusters unsuited for launching spacecraft into orbit, but effective for in-space propulsion over longer periods of time.
Ion thrusters are categorized as eitherelectrostatic orelectromagnetic. The main difference is the method for accelerating the ions.
Electrostatic ion thrusters use theCoulomb force and accelerate the ions in the direction of the electric field.
Electromagnetic ion thrusters use theLorentz force to accelerate the ions in the direction perpendicular to the electric field.
Electric power for ion thrusters is usually provided bysolar panels. However, for sufficiently large distances from the sun,nuclear power may be used. In each case, the power supply mass is proportional to the peak power that can be supplied, and both provide, for this application, almost no limit to the energy.[18]
Electric thrusters tend to produce low thrust, which results in low acceleration. Defining, thestandard gravitational acceleration of Earth, and noting that, this can be analyzed. AnNSTAR thruster producing a thrust force of 92 mN[19] will accelerate a satellite with a mass of 1ton by 0.092N / 1000 kg = 9.2×10−5m/s2 (or 9.38×10−6g). However, this acceleration can be sustained for months or years at a time, in contrast to the very short burns of chemical rockets.
The ion thruster is not the most promising type ofelectrically powered spacecraft propulsion, but it is the most successful in practice to date.[4] An ion drive would require two days to accelerate a car to highway speed in vacuum. The technical characteristics, especiallythrust, are considerably inferior to the prototypes described in literature,[3][4] technical capabilities are limited by thespace charge created by ions. This limits the thrust density (force per cross-sectionalarea of the engine).[4] Ion thrusters create small thrust levels (the thrust ofDeep Space 1 is approximately equal to the weight of one sheet of paper[4]) compared to conventionalchemical rockets, but achieve highspecific impulse, or propellant mass efficiency, by accelerating the exhaust to high speed. Thepower imparted to the exhaust increases with the square of exhaust velocity while thrust increase is linear. Conversely, chemical rockets provide high thrust, but are limited in totalimpulse by the small amount ofenergy that can be stored chemically in the propellants.[20] Given the practical weight of suitable power sources, the acceleration from an ion thruster is frequently less than one-thousandth ofstandard gravity. However, since they operate as electric (or electrostatic) motors, they convert a greater fraction of input power into kinetic exhaust power. Chemical rockets operate asheat engines, andCarnot's theorem limits the exhaust velocity.
A diagram of how a gridded electrostatic ion engine (multipole magnetic cusp type) works
Gridded electrostatic ion thrusters development started in the 1960s[21] and, since then, they have been used for commercial satellite propulsion[22][23][24] and scientific missions.[25][26] Their main feature is that the propellantionization process is physically separated from the ion acceleration process.[27]
The ionization process takes place in the discharge chamber, where by bombarding the propellant with energetic electrons, as the energy transferred ejects valence electrons from the propellant gas's atoms. These electrons can be provided by a hotcathodefilament and accelerated through the potential difference towards an anode. Alternatively, the electrons can be accelerated by an oscillating induced electric field created by an alternating electromagnet, which results in a self-sustaining discharge without a cathode (radio frequency ion thruster).
The positively charged ions are extracted by a system consisting of 2 or 3 multi-aperture grids. After entering the grid system near the plasma sheath, the ions are accelerated by the potential difference between the first grid and second grid (called the screen grid and the accelerator grid, respectively) to the final ion energy of (typically) 1–2 keV, which generates thrust.
Ion thrusters emit a beam of positively charged ions. To keep the spacecraft from accumulating a charge, anothercathode is placed near the engine to emit electrons into the ion beam, leaving the propellant electrically neutral. This prevents the beam of ions from being attracted (and returning) to the spacecraft, which would cancel the thrust.[13]
Gridded electrostatic ion thruster research (past/present):
Hall-effect thrusters accelerate ions by means of an electric potential between a cylindrical anode and a negatively charged plasma that forms the cathode. The bulk of the propellant (typically xenon) is introduced near the anode, where it ionizes and flows toward the cathode; ions accelerate towards and through it, picking up electrons as they leave to neutralize the beam and leave the thruster at high velocity.
The anode is at one end of a cylindrical tube. In the center is a spike that is wound to produce a radial magnetic field between it and the surrounding tube. The ions are largely unaffected by the magnetic field, since they are too massive. However, the electrons produced near the end of the spike to create the cathode are trapped by the magnetic field and held in place by their attraction to the anode. Some of the electrons spiral down towards the anode, circulating around the spike in aHall current. When they reach the anode they impact the uncharged propellant and cause it to be ionized, before finally reaching the anode and completing the circuit.[30]
Field-emission electric propulsion (FEEP) thrusters may usecaesium orindium propellants. The design comprises a small propellant reservoir that stores the liquid metal, a narrow tube or a system of parallel plates that the liquid flows through and an accelerator (a ring or an elongated aperture in a metallic plate) about a millimeter past the tube end. Caesium and indium are used due to their high atomic weights, low ionization potentials and low melting points. Once the liquid metal reaches the end of the tube, an electric field applied between the emitter and the accelerator causes the liquid surface to deform into a series of protruding cusps, orTaylor cones. At a sufficiently high applied voltage, positive ions are extracted from the tips of the cones.[31][32][33] The electric field created by the emitter and the accelerator then accelerates the ions. An external source of electrons neutralizes the positively charged ion stream to prevent charging of the spacecraft.
Pulsed inductive thrusters (PITs) use pulses instead of continuous thrust and have the ability to run on power levels on the order of megawatts (MW). PITs consist of a largecoil encircling a cone shaped tube that emits the propellant gas.Ammonia is the gas most commonly used. For each pulse, a large charge builds up in a group of capacitors behind the coil and is then released. This creates a current that moves circularly in the direction of jθ. The current then creates a magnetic field in the outward radial direction (Br), which then creates a current in the gas that has just been released in the opposite direction of the original current. This opposite current ionizes the ammonia. The positively charged ions are accelerated away from the engine due to the electric field jθ crossing the magnetic field Br, due to the Lorentz force.[34]
Magnetoplasmadynamic (MPD) thrusters andlithium Lorentz force accelerator (LiLFA) thrusters use roughly the same idea. The LiLFA thruster builds on the MPD thruster.Hydrogen,argon,ammonia andnitrogen can be used as propellant. In a certain configuration, the ambient gas inlow Earth orbit (LEO) can be used as a propellant. The gas enters the main chamber where it is ionized intoplasma by the electric field between theanode and thecathode. This plasma then conducts electricity between the anode and the cathode, closing the circuit. This new current creates a magnetic field around the cathode, which crosses with the electric field, thereby accelerating the plasma due to the Lorentz force.
The LiLFA thruster uses the same general idea as the MPD thruster, though with two main differences. First, the LiLFA uses lithium vapor, which can be stored as a solid. The other difference is that the single cathode is replaced by multiple, smaller cathode rods packed into ahollow cathode tube. MPD cathodes are easily corroded due to constant contact with the plasma. In the LiLFA thruster, the lithium vapor is injected into the hollow cathode and is not ionized to its plasma form/corrode the cathode rods until it exits the tube. The plasma is then accelerated using the sameLorentz force.[35][36][37]
In 2013, Russian company theChemical Automatics Design Bureau successfully conducted a bench test of their MPD engine for long-distance space travel.[38]
Electrodeless plasma thrusters have two unique features: the removal of the anode and cathode electrodes and the ability to throttle the engine. The removal of the electrodes eliminates erosion, which limits lifetime on other ion engines. Neutral gas is first ionized byelectromagnetic waves and then transferred to another chamber where it is accelerated by an oscillating electric and magnetic field, also known as theponderomotive force. This separation of the ionization and acceleration stages allows throttling of propellant flow, which then changes the thrust magnitude and specific impulse values.[39]
A helicon double layer thruster is a type of plasma thruster that ejects high velocityionized gas to providethrust. In this design, gas is injected into a tubular chamber (thesource tube) with one open end.Radio frequency AC power (at13.56 MHz in the prototype design) is coupled into a specially shapedantenna wrapped around the chamber. Theelectromagnetic wave emitted by the antenna causes the gas to break down and form a plasma. The antenna then excites ahelicon wave in the plasma, which further heats it. The device has a roughly constantmagnetic field in the source tube (supplied bysolenoids in the prototype), but the magnetic field diverges and rapidly decreases in magnitude away from the source region and might be thought of as a kind of magneticnozzle. In operation, a sharp boundary separates the high density plasma inside the source region and the low density plasma in the exhaust, which is associated with a sharp change in electrical potential. Plasma properties change rapidly across this boundary, which is known as acurrent-free electricdouble layer. The electrical potential is much higher inside the source region than in the exhaust and this serves both to confine most of the electrons and to accelerate the ions away from the source region. Enough electrons escape the source region to ensure that the plasma in the exhaust is neutral overall.
Variable Specific Impulse Magnetoplasma Rocket (VASIMR)
The proposedVariable Specific Impulse Magnetoplasma Rocket (VASIMR) functions by usingradio waves to ionize apropellant into a plasma, and then using amagnetic field to accelerate the plasma out of the back of therocket engine to generate thrust. The VASIMR is currently being developed byAd Astra Rocket Company, headquartered inHouston,Texas, with help fromCanada-basedNautel, producing the 200 kW RF generators for ionizing propellant. Some of the components and "plasma shoots" experiments are tested in a laboratory settled inLiberia, Costa Rica. This project is led by former NASA astronautFranklin Chang-Díaz (CRC-USA). A 200 kW VASIMR test engine was in discussion to be fitted in the exterior of theInternational Space Station, as part of the plan to test the VASIMR in space; however, plans for this test onboard ISS were canceled in 2015 byNASA, with a free flying VASIMR test being discussed by Ad Astra instead.[40] An envisioned 200 MW engine could reduce the duration of flight from Earth to Jupiter or Saturn from six years to fourteen months, and Mars from 7 months to 39 days.[41]
Under a research grant from theNASA Lewis Research Center during the 1980s and 1990s, Martin C. Hawley and Jes Asmussen led a team of engineers in developing a microwave electrothermal thruster (MET).[42]
In the discharge chamber,microwave (MW) energy flows into the center containing a high level ofions (I), causing neutral species in the gaseouspropellant to ionize. Excited species flow out (FES) through the low ion region (II) to a neutral region (III) where the ions complete theirrecombination, replaced with the flow of neutral species (FNS) towards the center. Meanwhile, energy is lost to the chamber walls through heatconduction andconvection (HCC), along withradiation (Rad). The remaining energy absorbed into the gaseous propellant is converted intothrust.
A theoretical propulsion system has been proposed, based onalpha particles (He2+ or4 2He2+ indicating a helium ion with a +2 charge) emitted from aradioisotope uni-directionally through a hole in its chamber. A neutralising electron gun would produce a tiny amount of thrust with high specific impulse in the order of millions of seconds due to the high relativistic speed of alpha particles.[43]
A variant of this uses a graphite-based grid with a staticDC high voltage to increase thrust asgraphite has high transparency toalpha particles if it is also irradiated with short waveUV light at the correct wavelength from a solid-state emitter. It also permits lower energy and longer half-life sources which would be advantageous for a space application.Helium backfill has also been suggested as a way to increase electron mean free path.
Ion thrusters' low thrust requires continuous operation for a long time to achieve the necessary change in velocity (delta-v) for a particular mission. Ion thrusters are designed to provide continuous operation for intervals of weeks to years.
The lifetime of electrostatic ion thrusters is limited by several processes.
In electrostatic gridded designs, charge-exchange ions produced by the beam ions with the neutral gas flow can be accelerated towards the negatively biased accelerator grid and cause grid erosion. End-of-life is reached when either the grid structure fails or the holes in the grid become large enough that ion extraction is substantially affected – e.g., by the occurrence of electron backstreaming. Grid erosion cannot be avoided and is the major lifetime-limiting factor. Thorough grid design and material selection enable lifetimes of 20,000 hours or more.
A test of theNASA Solar Technology Application Readiness (NSTAR) electrostatic ion thruster resulted in 30,472 hours (roughly 3.5 years) of continuous thrust at maximum power. Post-test examination indicated the engine was not approaching failure.[75][3][4] NSTAR operated for years onDawn.
TheNASA Evolutionary Xenon Thruster (NEXT) project operated continuously for more than 48,000 hours.[76] The test was conducted in a high-vacuum test chamber. Over the course of the test, which lasted more than five and a half years, the engine consumed approximately 870 kilograms of xenon propellant. The total impulse generated would require over 10,000 kilograms of conventional rocket propellant for a similar application.
Hall-effect thrusters suffer from strong erosion of the ceramic discharge chamber by impact of energetic ions: a test reported in 2010[77] showed erosion of around 1 mm per hundred hours of operation, though this is inconsistent with observed on-orbit lifetimes of a few thousand hours.
TheAdvanced Electric Propulsion System (AEPS) is expected to accumulate about 5,000 hours and the design aims to achieve a flight model that offers a half-life of at least 23,000 hours[78] and a full life of about 50,000 hours.[79]
Ionization energy represents a large percentage of the energy needed to run ion drives. The ideal propellant is thus easy to ionize and has a high mass/ionization energy ratio. In addition, the propellant should not erode the thruster to any great degree, so as to permit long life, and should not contaminate the vehicle.[80]
Many current designs usexenon gas, as it is easy to ionize, has a reasonably high atomic number, is inert and causes low erosion. However, xenon is globally in short supply and expensive (approximately $3,000 per kg in 2021).[81]
Some older ion thruster designs usedmercury propellant. However, mercury is toxic, tended to contaminate spacecraft, and was difficult to feed accurately. A modern commercial prototype may be using mercury successfully[82] however, mercury was formally banned as a propellant in 2022 by theMinamata Convention on Mercury.[83]
From 2018–2023,krypton was used to fuel the Hall-effect thrusters aboardStarlink internet satellites, in part due to its lower cost than conventionalxenon propellant.[84] Starlink V2-mini satellites have since switched toargon Hall-effect thrusters, providing higher specific impulse.[85]
Other propellants, such asbismuth andiodine, show promise both for gridless designs such as Hall-effect thrusters,[61][62][63] and gridded ion thrusters.[86]
Iodine was used as a propellant for the first time in space, in theNPT30-I2gridded ion thruster byThrustMe, on board the Beihangkongshi-1 mission launched in November 2020,[87][88][89] with an extensive report published a year later in the journalNature.[90] The CubeSat Ambipolar Thruster (CAT) used on the Mars Array of Ionospheric Research Satellites Using the CubeSat Ambipolar Thruster (MARS-CAT) mission also proposes to use solid iodine as the propellant to minimize storage volume.[70][71]
VASIMR design (and other plasma-based engines) are theoretically able to use practically any material for propellant. However, in current tests the most practical propellant isargon, which is relatively abundant and inexpensive.
Plot of instantaneous propulsive efficiency and overall efficiency for a vehicle accelerating from rest as percentages of the engine efficiency. Note that peak vehicle efficiency occurs at about 1.6 times exhaust velocity.
Ion thruster efficiency is the kinetic energy of the exhaust jet emitted per second divided by the electrical power into the device.
Overall systemenergy efficiency is determined by thepropulsive efficiency, which depends on vehicle speed and exhaust speed. Some thrusters can vary exhaust speed in operation, but all can be designed with different exhaust speeds. At the lower end of specific impulse,Isp, the overall efficiency drops because ionization takes up a larger percentage energy and at the high end propulsive efficiency is reduced.
Optimal efficiencies and exhaust velocities for any given mission can be calculated to give minimum overall cost.
Ion thrusters have many in-space propulsion applications. The best applications make use of the long mission interval when significantthrust is not needed. Examples of this include orbit transfers,attitude adjustments,drag compensation forlow Earth orbits, fine adjustments for scientific missions and cargo transport betweenpropellant depots, e.g., for chemical fuels. Ion thrusters can also be used for interplanetary and deep-space missions where acceleration rates are not crucial. Ion thrusters are seen as the best solution for these missions, as they require high change in velocity but do not require rapid acceleration. Continuous thrust over long durations can reach high velocities while consuming far less propellant than traditional chemical rockets.
Ion propulsion systems were first demonstrated in space by theNASA Lewis (now Glenn Research Center) missionsSpace Electric Rocket Test (SERT)-1 and SERT-2A.[25] ASERT-1 suborbital flight was launched on 20 July 1964, and successfully proved that the technology operated as predicted in space. These wereelectrostatic ion thrusters usingmercury andcaesium as the reaction mass. SERT-2A, launched on 4 February 1970,[14][91] verified the operation of two mercury ion engines for thousands of running hours.[14]
Ion thrusters are routinely used for station-keeping on commercial and military communication satellites in geosynchronous orbit. The Soviet Union pioneered this field, usingstationary plasma thrusters (SPTs) on satellites starting in the early 1970s.
Two geostationary satellites (ESA'sArtemis in 2001–2003[92] and the United States military'sAEHF-1 in 2010–2012[93]) used the ion thruster to change orbit after the chemical-propellant engine failed.Boeing[94] began using ion thrusters for station-keeping in 1997 and planned in 2013–2014 to offer a variant on their 702 platform, with no chemical engine and ion thrusters for orbit raising; this permits a significantly lower launch mass for a given satellite capability.AEHF-2 used a chemical engine to raise perigee to 16,330 km (10,150 mi) and proceeded togeosynchronous orbit using electric propulsion.[95]
China'sTiangong space station is fitted with ion thrusters. ItsTianhe core module is propelled by both chemical thrusters and four Hall-effect thrusters,[96] which are used to adjust and maintain the station's orbit. The development of the Hall-effect thrusters is considered a sensitive topic in China, with scientists "working to improve the technology without attracting attention". Hall-effect thrusters are created with crewed mission safety in mind with effort to prevent erosion and damage caused by the accelerated ion particles. A magnetic field and specially designed ceramic shield was created to repel damaging particles and maintain integrity of the thrusters. According to theChinese Academy of Sciences, the ion drive used on Tiangong has burned continuously for 8,240 hours without a glitch, indicating their suitability for the Chinese space station's designated 15-year lifespan.[97] This is the world's first Hall thruster on a human-rated mission.[7]
ESA'sGravity Field and Steady-State Ocean Circulation Explorer (GOCE) was launched on 16 March 2009. It used ion propulsion throughout its twenty-month mission to combat the air-drag it experienced in its low orbit (altitude of 255 kilometres) before intentionally deorbiting on 11 November 2013.
NASA developed theNSTAR ion engine for use in interplanetary science missions beginning in the late 1990s. It was space-tested in the space probeDeep Space 1, launched in 1998. This was the first use of electric propulsion as the interplanetary propulsion system on a science mission.[25] Based on the NASA design criteria,Hughes Research Labs developed theXenon Ion Propulsion System (XIPS) for performingstation keeping ongeosynchronous satellites.[99]Hughes (EDD) manufactured the NSTAR thruster used on the spacecraft.
TheJapanese Aerospace Exploration Agency'sHayabusa space probe was launched in 2003 and rendezvoused with the asteroid25143 Itokawa. It was powered by four xenon ion engines, which used microwaveelectron cyclotron resonance to ionize the propellant and an erosion-resistant carbon/carbon-composite material for its acceleration grid.[100] Although the ion engines onHayabusa experienced technical difficulties, in-flight reconfiguration allowed one of the four engines to be repaired and allowed the mission to successfully return to Earth.[101]
Hayabusa2, launched in 2014, was based on Hayabusa. It also used ion thrusters.[102]
TheEuropean Space Agency's satelliteSMART-1 launched in 2003 using aSnecmaPPS-1350-G Hall thruster to get fromGTO to lunar orbit. This satellite completed its mission on 3 September 2006, in a controlled collision on theMoon's surface, after a trajectory deviation so scientists could see the 3-meter crater the impact created on the visible side of the Moon.
Dawn launched on 27 September 2007, to explore the asteroidVesta and the dwarf planetCeres. It used threeDeep Space 1 heritage xenon ion thrusters (firing one at a time).Dawn's ion drive is capable of accelerating from 0 to 97 km/h (60 mph) in 4 days of continuous firing.[103] The mission ended on 1 November 2018, when the spacecraft ran out ofhydrazine chemical propellant for its attitude thrusters.[104]
LISA Pathfinder is anESA spacecraft launched in 2015 to orbit the Sun-Earth L1 point. It does not use ion thrusters as its primary propulsion system, but uses bothcolloid thrusters andFEEP for preciseattitude control – the low thrusts of these propulsion devices make it possible to move the spacecraft incremental distances accurately. It is a test for theLISA mission. The mission ended on 30 December 2017.
ESA'sBepiColombo mission was launched toMercury on 20 October 2018.[105] It uses ion thrusters in combination withswing-bys to get to Mercury, where a chemical rocket will complete orbit insertion.
NASA'sDouble Asteroid Redirection Test (DART) was launched in 2021 and operated itsNEXT-C xenon ion thruster for about 1,000 hours to reach the target asteroid on 28 September 2022.
As of March 2011[update], a future launch of an Ad Astra VF-200200 kWVASIMR electromagnetic thruster was under consideration for testing on theInternational Space Station (ISS).[106][107] However, in 2015, NASA ended plans for flying the VF-200 to the ISS. A NASA spokesperson stated that the ISS "was not an ideal demonstration platform for the desired performance level of the engines". Ad Astra stated that tests of a VASIMR thruster on the ISS would remain an option after a future in-space demonstration.[40]
The VF-200 would have been a flight version of theVX-200.[108][109] Since the available power from the ISS is less than 200 kW, the ISS VASIMR would have included a trickle-charged battery system allowing for 15 minutes pulses of thrust. The ISS orbits at a relativelylow altitude and experiences fairly high levels ofatmospheric drag, requiringperiodic altitude boosts – a high-efficiency engine (high specific impulse) for station-keeping would be valuable; theoretically VASIMR reboosting could cut fuel cost from the current US$210 million annually to one-twentieth.[106] VASIMR could in theory use as little as 300 kg of argon gas for ISS station-keeping instead of 7500 kg of chemical fuel – the high exhaust velocity (highspecific impulse) would achieve the same acceleration with a smaller amount of propellant, compared to chemical propulsion with its lower exhaust velocity needing more fuel.[110]Hydrogen is generated by the ISS as a by-product and is vented into space.
NASA previously worked on a 50 kW Hall-effect thruster for the ISS, but work was stopped in 2005.[110]
The MARS-CAT (Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster) mission is a two 6UCubeSat concept mission to study Mars' ionosphere. The mission would investigate its plasma and magnetic structure, including transient plasma structures, magnetic field structure, magnetic activity and correlation with solar wind drivers.[70] The CAT thruster is now called theRF thruster and manufactured by Phase Four.[71]
Geoffrey A. Landis proposed using an ion thruster powered by a space-based laser, in conjunction with a lightsail, to propel an interstellar probe.[112][113]
The idea of an ion engine first appeared in Donald W. Horner'sBy Aeroplane to the Sun: Being the Adventures of a Daring Aviator and his Friends (1910).[114]
Ion propulsion is the main thrust source of the spaceshipKosmokrator in the East German/Polish science fiction filmDer Schweigende Stern (1960).[115] Minute 28:10.
^Jahn, Robert G. (1968).Physics of Electric Propulsion (1st ed.). McGraw Hill Book Company.ISBN978-0070322448. Reprint:Jahn, Robert G. (2006).Physics of Electric Propulsion. Dover Publications.ISBN978-0486450407.
^Jahn, Robert G.; Choueiri, Edgar Y. (2003)."Electric Propulsion"(PDF).Encyclopedia of Physical Science and Technology. Vol. 5 (3rd ed.). Academic Press. pp. 125–141.ISBN978-0122274107.Archived(PDF) from the original on 10 October 2022.
^Cybulski, Ronald J.; Shellhammer, Daniel M.; Lovell, Robert R.; Domino, Edward J.; Kotnik, Joseph T. (1965)."Results from SERT I Ion Rocket Flight Test"(PDF).NASA. NASA-TN-D-2718.Archived(PDF) from the original on 9 October 2022. This article incorporates text from this source, which is in thepublic domain.
^abcJ. S. Sovey, V. K. Rawlin, and M. J. Patterson, "Ion Propulsion Development Projects in U. S.: Space Electric Rocket Test 1 to Deep Space 1",Journal of Propulsion and Power, Vol. 17, No. 3, May–June 2001, pp. 517–526.
^Marrese-Reading, Colleen; Polk, Jay; Mueller, Juergen; Owens, Al."In-FEEP Thruster Ion Beam Neutralization with Thermionic and Field Emission Cathodes"(PDF). Archived fromthe original(PDF) on 13 October 2006. Retrieved21 November 2007.liquid state and wicked up the needle shank to the tip where high electric fields deform the liquid and extract ions and accelerate them up to 130 km/s through 10 kV This article incorporates text from this source, which is in thepublic domain.
^"Less Fuel, More Thrust: New Engines are Being Designed for Deep Space".The Arugus-Press. Vol. 128, no. 48. Owosso, Michigan. 26 February 1982. p. 10.
^Qualification of the T6 Thruster for BepiColomboArchived 12 August 2016 at theWayback Machine R. A. Lewis, J. Pérez Luna, N. Coombs. 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, 4–10 July 2015
^abcdSzabo, J., Robin, M., Paintal, Pote, B., S., Hruby, V., "High Density Hall Thruster Propellant Investigations", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2012-3853, July 2012.
^abcdSzabo, J.; Pote, B.; Paintal, S.; Robin, M.; Hillier, A.; Branam, R.; Huffman, R. (2012). "Performance Evaluation of an Iodine Vapor Hall Thruster".Journal of Propulsion and Power.28 (4):848–857.doi:10.2514/1.B34291.
^Rawlin, V. K.; Patterson, M. J/; Gruber, R. P. (1990)."Xenon Ion Propulsion for Orbit Transfer"(PDF).NASA Technical Memorandum 103193 (AIAA-90-2527): 5.Archived(PDF) from the original on 9 October 2022. Retrieved25 January 2022.
^Kruschel, Karsten (2007).Leim für die Venus – Der Science-Fiction-Film in der DDR [Glue for Venus – The science fiction film in the GDR] (in German). Heyne. pp. 803–888.ISBN978-3-453-52261-9.