Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Image (category theory)

From Wikipedia, the free encyclopedia

Incategory theory, a branch ofmathematics, theimage of amorphism is a generalization of theimage of afunction.

General definition

[edit]

Given acategoryC{\displaystyle C} and amorphismf:XY{\displaystyle f\colon X\to Y} inC{\displaystyle C}, theimage[1]off{\displaystyle f} is amonomorphismm:IY{\displaystyle m\colon I\to Y} satisfying the followinguniversal property:

  1. There exists a morphisme:XI{\displaystyle e\colon X\to I} such thatf=me{\displaystyle f=m\,e}.
  2. For any objectI{\displaystyle I'} with a morphisme:XI{\displaystyle e'\colon X\to I'} and a monomorphismm:IY{\displaystyle m'\colon I'\to Y} such thatf=me{\displaystyle f=m'\,e'}, there exists a unique morphismv:II{\displaystyle v\colon I\to I'} such thatm=mv{\displaystyle m=m'\,v}.

Remarks:

  1. such a factorization does not necessarily exist.
  2. e{\displaystyle e} is unique by definition ofm{\displaystyle m}monic.
  3. me=f=me=mve{\displaystyle m'e'=f=me=m've}, thereforee=ve{\displaystyle e'=ve} bym{\displaystyle m'} monic.
  4. v{\displaystyle v} is monic.
  5. m=mv{\displaystyle m=m'\,v} already implies thatv{\displaystyle v} is unique.

The image off{\displaystyle f} is often denoted byImf{\displaystyle {\text{Im}}f} orIm(f){\displaystyle {\text{Im}}(f)}.

Proposition: IfC{\displaystyle C} has allequalizers then thee{\displaystyle e} in the factorizationf=me{\displaystyle f=m\,e} of (1) is anepimorphism.[2]

Proof

Letα,β{\displaystyle \alpha ,\,\beta } be such thatαe=βe{\displaystyle \alpha \,e=\beta \,e}, one needs to show thatα=β{\displaystyle \alpha =\beta }. Since the equalizer of(α,β){\displaystyle (\alpha ,\beta )} exists,e{\displaystyle e} factorizes ase=qe{\displaystyle e=q\,e'} withq{\displaystyle q} monic. But thenf=(mq)e{\displaystyle f=(m\,q)\,e'} is a factorization off{\displaystyle f} with(mq){\displaystyle (m\,q)} monomorphism. Hence by the universal property of the image there exists a unique arrowv:IEqα,β{\displaystyle v:I\to Eq_{\alpha ,\beta }} such thatm=mqv{\displaystyle m=m\,q\,v} and sincem{\displaystyle m} is monicidI=qv{\displaystyle {\text{id}}_{I}=q\,v}. Furthermore, one hasmq=(mqv)q{\displaystyle m\,q=(mqv)\,q} and by the monomorphism property ofmq{\displaystyle mq} one obtainsidEqα,β=vq{\displaystyle {\text{id}}_{Eq_{\alpha ,\beta }}=v\,q}.

This means thatIEqα,β{\displaystyle I\equiv Eq_{\alpha ,\beta }} and thus thatidI=qv{\displaystyle {\text{id}}_{I}=q\,v} equalizes(α,β){\displaystyle (\alpha ,\beta )}, whenceα=β{\displaystyle \alpha =\beta }.

Second definition

[edit]

In a categoryC{\displaystyle C} with all finitelimits andcolimits, theimage is defined as theequalizer(Im,m){\displaystyle (Im,m)} of the so-calledcokernel pair(YXY,i1,i2){\displaystyle (Y\sqcup _{X}Y,i_{1},i_{2})}, which is thecocartesian of a morphism with itself over its domain, which will result in a pair of morphismsi1,i2:YYXY{\displaystyle i_{1},i_{2}:Y\to Y\sqcup _{X}Y}, on which theequalizer is taken, i.e. the first of the following diagrams iscocartesian, and the secondequalizing.[3]

Remarks:

  1. Finitebicompleteness of the category ensures that pushouts and equalizers exist.
  2. (Im,m){\displaystyle (Im,m)} can be calledregular image asm{\displaystyle m} is aregular monomorphism, i.e. the equalizer of a pair of morphisms. (Recall also that an equalizer is automatically a monomorphism).
  3. In an abelian category, the cokernel pair property can be writteni1f=i2f  (i1i2)f=0=0f{\displaystyle i_{1}\,f=i_{2}\,f\ \Leftrightarrow \ (i_{1}-i_{2})\,f=0=0\,f} and the equalizer conditioni1m=i2m  (i1i2)m=0m{\displaystyle i_{1}\,m=i_{2}\,m\ \Leftrightarrow \ (i_{1}-i_{2})\,m=0\,m}. Moreover, all monomorphisms are regular.

TheoremIff{\displaystyle f} always factorizes through regular monomorphisms, then the two definitions coincide.

Proof

First definition implies the second: Assume that(1) holds withm{\displaystyle m} regular monomorphism.

Moreover, as a regular monomorphism,(I,m){\displaystyle (I,m)} is the equalizer of a pair of morphismsb1,b2:YB{\displaystyle b_{1},b_{2}:Y\longrightarrow B} but we claim here that it is also the equalizer ofc1,c2:YYIY{\displaystyle c_{1},c_{2}:Y\longrightarrow Y\sqcup _{I}Y}.
Indeed, by constructionb1m=b2m{\displaystyle b_{1}\,m=b_{2}\,m} thus the "cokernel pair" diagram form{\displaystyle m} yields a unique morphismu:YIYB{\displaystyle u':Y\sqcup _{I}Y\longrightarrow B} such thatb1=uc1, b2=uc2{\displaystyle b_{1}=u'\,c_{1},\ b_{2}=u'\,c_{2}}. Now, a mapm:IY{\displaystyle m':I'\longrightarrow Y} which equalizes(c1,c2){\displaystyle (c_{1},c_{2})} also satisfiesb1m=uc1m=uc2m=b2m{\displaystyle b_{1}\,m'=u'\,c_{1}\,m'=u'\,c_{2}\,m'=b_{2}\,m'}, hence by the equalizer diagram for(b1,b2){\displaystyle (b_{1},b_{2})}, there exists a unique maph:II{\displaystyle h':I'\to I} such thatm=mh{\displaystyle m'=m\,h'}.
Finally, use the cokernel pair diagram (off{\displaystyle f}) withj1:=c1, j2:=c2, Z:=YIY{\displaystyle j_{1}:=c_{1},\ j_{2}:=c_{2},\ Z:=Y\sqcup _{I}Y} : there exists a uniqueu:YXYYIY{\displaystyle u:Y\sqcup _{X}Y\longrightarrow Y\sqcup _{I}Y} such thatc1=ui1, c2=ui2{\displaystyle c_{1}=u\,i_{1},\ c_{2}=u\,i_{2}}. Therefore, any mapg{\displaystyle g} which equalizes(i1,i2){\displaystyle (i_{1},i_{2})} also equalizes(c1,c2){\displaystyle (c_{1},c_{2})} and thus uniquely factorizes asg=mh{\displaystyle g=m\,h'}. This exactly means that(I,m){\displaystyle (I,m)} is the equalizer of(i1,i2){\displaystyle (i_{1},i_{2})}.

Second definition implies the first:

Thend1m=d2m  d1f=d1me=d2me=d2f{\displaystyle d_{1}\,m'=d_{2}\,m'\ \Rightarrow \ d_{1}\,f=d_{1}\,m'\,e=d_{2}\,m'\,e=d_{2}\,f} so that by the "cokernel pair" diagram (off{\displaystyle f}), withj1:=d1, j2:=d2, Z:=D{\displaystyle j_{1}:=d_{1},\ j_{2}:=d_{2},\ Z:=D}, there exists a uniqueu:YXYD{\displaystyle u'':Y\sqcup _{X}Y\longrightarrow D} such thatd1=ui1, d2=ui2{\displaystyle d_{1}=u''\,i_{1},\ d_{2}=u''\,i_{2}}.
Now, fromi1m=i2m{\displaystyle i_{1}\,m=i_{2}\,m} (m from the equalizer of (i1, i2) diagram), one obtainsd1m=ui1m=ui2m=d2m{\displaystyle d_{1}\,m=u''\,i_{1}\,m=u''\,i_{2}\,m=d_{2}\,m}, hence by the universality in the (equalizer of (d1, d2) diagram, withf replaced bym), there exists a uniquev:ImI{\displaystyle v:Im\longrightarrow I'} such thatm=mv{\displaystyle m=m'\,v}.

Examples

[edit]

In thecategory of sets the image of a morphismf:XY{\displaystyle f\colon X\to Y} is theinclusion from the ordinaryimage{f(x) | xX}{\displaystyle \{f(x)~|~x\in X\}} toY{\displaystyle Y}. In manyconcrete categories such asgroups,abelian groups and (left- or right)modules, the image of a morphism is the image of the correspondent morphism in the category of sets.

In anynormal category with azero object andkernels andcokernels for every morphism, the image of a morphismf{\displaystyle f} can be expressed as follows:

imf = ker cokerf

In anabelian category (which is in particular binormal), iff is a monomorphism thenf = ker cokerf, and sof = imf.

Essential Image

[edit]

A related notion to image isessential image.[4]

A subcategoryCB{\displaystyle C\subset B} of a (strict) category is said to bereplete if for everyxC{\displaystyle x\in C}, and for every isomorphismι:xy{\displaystyle \iota :x\to y}, bothι{\displaystyle \iota } andy{\displaystyle y} belong to C.

Given a functorF:AB{\displaystyle F\colon A\to B} between categories, the smallestreplete subcategory of the target n-category B containing the image of A under F.

See also

[edit]

References

[edit]
  1. ^Mitchell, Barry (1965),Theory of categories, Pure and applied mathematics, vol. 17, Academic Press,ISBN 978-0-12-499250-4,MR 0202787 Section I.10 p.12
  2. ^Mitchell, Barry (1965),Theory of categories, Pure and applied mathematics, vol. 17, Academic Press,ISBN 978-0-12-499250-4,MR 0202787 Proposition 10.1 p.12
  3. ^Kashiwara, Masaki;Schapira, Pierre (2006),"Categories and Sheaves", Grundlehren der Mathematischen Wissenschaften, vol. 332, Berlin Heidelberg: Springer, pp. 113–114 Definition 5.1.1
  4. ^"essential image in nLab".ncatlab.org. Retrieved2024-11-15.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Image_(category_theory)&oldid=1257522642"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp