AnInfrared Search and Track (IRST) system (sometimes known asinfrared sighting and tracking) is a method for detecting and tracking objects which give offinfraredradiation, such as theinfrared signatures ofjet aircraft andhelicopters.[1]
IRST is a generalized case ofForward Looking Infrared (FLIR), i.e. from forward-looking to all-roundsituation awareness. Such systems are passive (thermographic camera), meaning they do not give out any radiation of their own, unlikeradar. This gives them the advantage that they are difficult to detect.
However, because the atmosphere attenuates infrared to some extent (although not as much asvisible light) and because adverse weather can attenuate it also (again, not as badly as visible systems), their range compared to a radar is limited. Within range, an IRST'sangular resolution is better than radar due to the shorterwavelength.
The first uses of an IRST system appeared in theF-101 Voodoo,F-102 Delta Dagger andF-106 Delta Dartinterceptors. The F-106 had an early IRST mounting replaced in 1963 with a production retractable mount.[2] The IRST was also incorporated into theF-8 Crusader (F-8E variant) allowing passive tracking of heat emissions and was similar to the laterTexas InstrumentsAN/AAA-4 installed on earlyF-4 Phantoms.[3]
The F-4 Phantom had a Texas Instruments AAA-4 infrared seeker[4] under the nose of early production aircraft F-4Bs and F-4Cs. It was not not installed on later F-4Ds due to limited capabilities,[5] but retained the bulge and indeed some F-4Ds had the IRST receiver retrofitted in a modified form.[3]
The F-4E eliminated the AAA-4 IRST bulge and received an internal gun mount which took up the area under the nose.[6] The F-4J which had apulse-Doppler radar also eliminated the AAA-4 IRST receiver and bulge under the nose.[7]
The first use of IRST in a Eurasian country was theMikoyan-Gurevich MiG-23,[8] which used the (TP-23ML) IRST; later versions used the (26SH1) IRST.[9] TheMikoyan-Gurevich MiG-25PD was also equipped with a small IRST under the nose.[10]
The SwedishSaab J-35F2 Draken (1965) also used an IRST, aHughes Aircraft Company N71.
IRST systems re-appeared on more modern designs starting in the 1980s with the introduction of 2-D sensors, which cued[clarification needed] both horizontal and vertical angle. Sensitivities were also greatly improved, leading to better resolution and range. In more recent years, new systems have entered the market. In 2015, Northrop Grumman introduced its OpenPod IRST pod,[11] which uses a sensor byLeonardo.[12] The United States Air Force is currently incorporating IRST systems for its fighter aircraft fleet, including the F-15, F-16, and F-22.[13][14]
While IRST systems are most common amongst aircraft, land-based, ship and submarine systems are available.[15][16][17]
TheF-35 is equipped with infrared search and track systemAN/AAQ-37 Distributed Aperture System (DAS), which consists of six IR sensors around the aircraft for full spherical coverage, providing day/night imaging and acting as an IRST and missile approach warning system.[18]
Chengdu J-20 andShenyang FC-31 is assumed to share the similar design concept with their system. IRST systems can also be used to detect stealth aircraft, in some cases, outperforming traditional radar.[19]
These were fairly simple systems consisting of aninfra-red sensor with a horizontally rotating shutter in front of it. The shutter was slaved to a display under the main interception radar display in the cockpit. Any IR light falling on the sensor would generate a "pip" on the display, in a fashion similar to theB-scopes used on early radars.
The display was primarily intended to allow the radar operator to manually turn the radar to the approximate angle of the target, in an era when radar systems had to be "locked on" by hand. The system was considered to be of limited utility, and with the introduction of more automated radars they disappeared from fighter designs for some time.
Detection range varies with external factors such as
The higher the altitude, the less dense the atmosphere and the less infrared radiation it absorbs - especially at longer wavelengths. The effect of reduction in friction between air and aircraft does not compensate for the better transmission of infrared radiation. Therefore, infrared detection ranges are longer at high altitudes.
At high altitudes, temperatures range from −30 to −50 °C - which provide better contrast between aircraft temperature and background temperature.
The Eurofighter Typhoon's PIRATE IRST can detect subsonic fighters from 50 km from the front and 90 km from the rear[20] - the larger value being the consequence of directly observing the engine exhaust, with an even greater increase being possible if the target usesafterburners.
The range at which a target can be identified with sufficient confidence to decide on weapon release is significantly inferior to the detection range - manufacturers have claimed it is about 65% of the detection range.
Withinfrared homing orfire-and-forget missiles, the fighter may be able to fire upon the target without having to turn on its radar sets at all. Otherwise, the fighter can turn the radar on and achieve a lock immediately before firing if desired. The fighter could also close to withincannon range and engage that way.
Whether or not they use their radar, the IRST system can still allow them to launch a surprise attack.
An IRST system may also have a regular magnified optical sight slaved to it, to help the IRST-equipped aircraft identify the target at long range. As opposed to an ordinaryforward looking infrared system, an IRST system will actually scan the space around the aircraft similarly to the way in which mechanically (or even electronically) steered radars work. The exception to the scanning technique is the F-35's DAS, which stares in all directions simultaneously, and automatically detects and declares aircraft and missiles in all directions, without a limit to the number of targets simultaneously tracked.
When they find one or more potential targets they will alert the pilot(s) and display the location of each target relative to the aircraft on a screen, much like a radar. Again similarly to the way a radar works, the operator can tell the IRST to track a particular target of interest, once it has been identified, or scan in a particular direction if a target is believed to be there (for example, because of an advisory from AWACS or another aircraft).
IRST systems can incorporatelaser rangefinders in order to provide fullfire-control solutions for cannon fire or launching missiles (Optronique Secteur Frontal). The combination of an atmospheric propagation model, the apparent surface of the target, and target motion analysis (TMA) IRST can calculate the range.
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(April 2023) (Learn how and when to remove this message) |
The best known modern IRST systems are:
Fighter aircraft carry the IRST systems for use instead of radar when the situation warrants it, such as when shadowing other aircraft, under the control ofairborne early warning and control (AWACS) aircraft, or executing aground-controlled interception (GCI), where an external radar is used to help vector the fighter to a target and the IRST is used to pick up and track the target once the fighter is in range.