Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hamiltonian mechanics

From Wikipedia, the free encyclopedia
(Redirected fromHamiltonian Mechanics)
Formulation of classical mechanics using momenta
Sir William Rowan Hamilton
Part of a series on
Classical mechanics
F=dpdt{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}

Inphysics,Hamiltonian mechanics is a reformulation ofLagrangian mechanics that emerged in 1833. Introduced bySir William Rowan Hamilton,[1] Hamiltonian mechanics replaces (generalized) velocitiesq˙i{\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized)momenta. Both theories provide interpretations ofclassical mechanics and describe the same physical phenomena.

Hamiltonian mechanics has a close relationship with geometry (notably,symplectic geometry andPoisson structures) and serves as alink between classical andquantum mechanics.

Overview

[edit]

Phase space coordinates (p,q) and HamiltonianH

[edit]

Let(M,L){\displaystyle (M,{\mathcal {L}})} be amechanical system withconfiguration spaceM{\displaystyle M} and smoothLagrangianL.{\displaystyle {\mathcal {L}}.} Select a standard coordinate system(q,q˙){\displaystyle ({\boldsymbol {q}},{\boldsymbol {\dot {q}}})} onM.{\displaystyle M.} The quantitiespi(q,q˙,t) =def L/q˙i{\displaystyle \textstyle p_{i}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)~{\stackrel {\text{def}}{=}}~{\partial {\mathcal {L}}}/{\partial {\dot {q}}^{i}}} are calledmomenta. (Alsogeneralized momenta,conjugate momenta, andcanonical momenta). For a time instantt,{\displaystyle t,} theLegendre transformation ofL{\displaystyle {\mathcal {L}}} is defined as the map(q,q˙)(p,q){\displaystyle ({\boldsymbol {q}},{\boldsymbol {\dot {q}}})\to \left({\boldsymbol {p}},{\boldsymbol {q}}\right)} which is assumed to have a smooth inverse(p,q)(q,q˙).{\displaystyle ({\boldsymbol {p}},{\boldsymbol {q}})\to ({\boldsymbol {q}},{\boldsymbol {\dot {q}}}).} For a system withn{\displaystyle n} degrees of freedom, the Lagrangian mechanics defines theenergy functionEL(q,q˙,t)=defi=1nq˙iLq˙iL.{\displaystyle E_{\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)\,{\stackrel {\text{def}}{=}}\,\sum _{i=1}^{n}{\dot {q}}^{i}{\frac {\partial {\mathcal {L}}}{\partial {\dot {q}}^{i}}}-{\mathcal {L}}.}

The Legendre transform ofL{\displaystyle {\mathcal {L}}} turnsEL{\displaystyle E_{\mathcal {L}}} into a functionH(p,q,t){\displaystyle {\mathcal {H}}({\boldsymbol {p}},{\boldsymbol {q}},t)} known as theHamiltonian. The Hamiltonian satisfiesH(Lq˙,q,t)=EL(q,q˙,t){\displaystyle {\mathcal {H}}\left({\frac {\partial {\mathcal {L}}}{\partial {\boldsymbol {\dot {q}}}}},{\boldsymbol {q}},t\right)=E_{\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}which implies thatH(p,q,t)=i=1npiq˙iL(q,q˙,t),{\displaystyle {\mathcal {H}}({\boldsymbol {p}},{\boldsymbol {q}},t)=\sum _{i=1}^{n}p_{i}{\dot {q}}^{i}-{\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t),}where the velocitiesq˙=(q˙1,,q˙n){\displaystyle {\boldsymbol {\dot {q}}}=({\dot {q}}^{1},\ldots ,{\dot {q}}^{n})} are found from the (n{\displaystyle n}-dimensional) equationp=L/q˙{\displaystyle \textstyle {\boldsymbol {p}}={\partial {\mathcal {L}}}/{\partial {\boldsymbol {\dot {q}}}}} which, by assumption, is uniquely solvable forq˙{\displaystyle {\boldsymbol {\dot {q}}}}. The (2n{\displaystyle 2n}-dimensional) pair(p,q){\displaystyle ({\boldsymbol {p}},{\boldsymbol {q}})} is calledphase space coordinates. (Alsocanonical coordinates).

From Euler–Lagrange equation to Hamilton's equations

[edit]

In phase space coordinates(p,q){\displaystyle ({\boldsymbol {p}},{\boldsymbol {q}})}, the (n{\displaystyle n}-dimensional)Euler–Lagrange equationLqddtLq˙=0{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial {\boldsymbol {q}}}}-{\frac {d}{dt}}{\frac {\partial {\mathcal {L}}}{\partial {\dot {\boldsymbol {q}}}}}=0}becomesHamilton's equations in2n{\displaystyle 2n} dimensions

dqdt=Hp,dpdt=Hq.{\displaystyle {\frac {\mathrm {d} {\boldsymbol {q}}}{\mathrm {d} t}}={\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {p}}}},\quad {\frac {\mathrm {d} {\boldsymbol {p}}}{\mathrm {d} t}}=-{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {q}}}}.}

Proof

The HamiltonianH(p,q){\displaystyle {\mathcal {H}}({\boldsymbol {p}},{\boldsymbol {q}})} is theLegendre transform of the LagrangianL(q,q˙){\displaystyle {\mathcal {L}}({\boldsymbol {q}},{\dot {\boldsymbol {q}}})}, thus one hasL(q,q˙)+H(p,q)=pq˙{\displaystyle {\mathcal {L}}({\boldsymbol {q}},{\dot {\boldsymbol {q}}})+{\mathcal {H}}({\boldsymbol {p}},{\boldsymbol {q}})={\boldsymbol {p}}{\dot {\boldsymbol {q}}}}and thusHp=q˙Lq=Hq,{\displaystyle {\begin{aligned}{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {p}}}}&={\dot {\boldsymbol {q}}}\\{\frac {\partial {\mathcal {L}}}{\partial {\boldsymbol {q}}}}&=-{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {q}}}},\end{aligned}}}

Besides, sincep=L/q˙{\displaystyle {\boldsymbol {p}}=\partial {\mathcal {L}}/\partial {\dot {\boldsymbol {q}}}}, the Euler–Lagrange equations yieldp˙=dpdt=Lq=Hq.{\displaystyle {\dot {\boldsymbol {p}}}={\frac {\mathrm {d} {\boldsymbol {p}}}{\mathrm {d} t}}={\frac {\partial {\mathcal {L}}}{\partial {\boldsymbol {q}}}}=-{\frac {\partial {\mathcal {H}}}{\partial {\boldsymbol {q}}}}.}

From stationary action principle to Hamilton's equations

[edit]

LetP(a,b,xa,xb){\displaystyle {\mathcal {P}}(a,b,{\boldsymbol {x}}_{a},{\boldsymbol {x}}_{b})} be the set of smooth pathsq:[a,b]M{\displaystyle {\boldsymbol {q}}:[a,b]\to M} for whichq(a)=xa{\displaystyle {\boldsymbol {q}}(a)={\boldsymbol {x}}_{a}} andq(b)=xb.{\displaystyle {\boldsymbol {q}}(b)={\boldsymbol {x}}_{b}.} Theaction functionalS:P(a,b,xa,xb)R{\displaystyle {\mathcal {S}}:{\mathcal {P}}(a,b,{\boldsymbol {x}}_{a},{\boldsymbol {x}}_{b})\to \mathbb {R} } is defined viaS[q]=abL(t,q(t),q˙(t))dt=ab(i=1npiq˙iH(p,q,t))dt,{\displaystyle {\mathcal {S}}[{\boldsymbol {q}}]=\int _{a}^{b}{\mathcal {L}}(t,{\boldsymbol {q}}(t),{\dot {\boldsymbol {q}}}(t))\,dt=\int _{a}^{b}\left(\sum _{i=1}^{n}p_{i}{\dot {q}}^{i}-{\mathcal {H}}({\boldsymbol {p}},{\boldsymbol {q}},t)\right)\,dt,}whereq=q(t){\displaystyle {\boldsymbol {q}}={\boldsymbol {q}}(t)}, andp=L/q˙{\displaystyle {\boldsymbol {p}}=\partial {\mathcal {L}}/\partial {\boldsymbol {\dot {q}}}} (see above). A pathqP(a,b,xa,xb){\displaystyle {\boldsymbol {q}}\in {\mathcal {P}}(a,b,{\boldsymbol {x}}_{a},{\boldsymbol {x}}_{b})} is astationary point ofS{\displaystyle {\mathcal {S}}} (and hence is an equation of motion) if and only if the path(p(t),q(t)){\displaystyle ({\boldsymbol {p}}(t),{\boldsymbol {q}}(t))} in phase space coordinates obeys the Hamilton equations.

Basic physical interpretation

[edit]

A simple interpretation of Hamiltonian mechanics comes from its application on a one-dimensional system consisting of one nonrelativistic particle of massm. The valueH(p,q){\displaystyle H(p,q)} of the Hamiltonian is the total energy of the system, in this case the sum ofkinetic andpotential energy, traditionally denotedT andV, respectively. Herep is the momentummv andq is the space coordinate. ThenH=T+V,T=p22m,V=V(q){\displaystyle {\mathcal {H}}=T+V,\qquad T={\frac {p^{2}}{2m}},\qquad V=V(q)}T is a function ofp alone, whileV is a function ofq alone (i.e.,T andV arescleronomic).

In this example, the time derivative ofq is the velocity, and so the first Hamilton equation means that the particle's velocity equals the derivative of its kinetic energy with respect to its momentum. The time derivative of the momentump equals theNewtonian force, and so the second Hamilton equation means that the force equals the negativegradient of potential energy.

Example

[edit]
Main article:Spherical pendulum

A spherical pendulum consists of amassm moving withoutfriction on the surface of asphere. The onlyforces acting on the mass are thereaction from the sphere andgravity.Spherical coordinates are used to describe the position of the mass in terms of(r,θ,φ), wherer is fixed,r =.

Spherical pendulum: angles and velocities.

The Lagrangian for this system is[2]L=12m2(θ˙2+sin2θ φ˙2)+mgcosθ.{\displaystyle L={\frac {1}{2}}m\ell ^{2}\left({\dot {\theta }}^{2}+\sin ^{2}\theta \ {\dot {\varphi }}^{2}\right)+mg\ell \cos \theta .}

Thus the Hamiltonian isH=Pθθ˙+Pφφ˙L{\displaystyle H=P_{\theta }{\dot {\theta }}+P_{\varphi }{\dot {\varphi }}-L}wherePθ=Lθ˙=m2θ˙{\displaystyle P_{\theta }={\frac {\partial L}{\partial {\dot {\theta }}}}=m\ell ^{2}{\dot {\theta }}}andPφ=Lφ˙=m2sin2θφ˙.{\displaystyle P_{\varphi }={\frac {\partial L}{\partial {\dot {\varphi }}}}=m\ell ^{2}\sin ^{2}\!\theta \,{\dot {\varphi }}.}In terms of coordinates and momenta, the Hamiltonian readsH=[12m2θ˙2+12m2sin2θφ˙2]T+[mgcosθ]V=Pθ22m2+Pφ22m2sin2θmgcosθ.{\displaystyle H=\underbrace {\left[{\frac {1}{2}}m\ell ^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}m\ell ^{2}\sin ^{2}\!\theta \,{\dot {\varphi }}^{2}\right]} _{T}+\underbrace {{\Big [}-mg\ell \cos \theta {\Big ]}} _{V}={\frac {P_{\theta }^{2}}{2m\ell ^{2}}}+{\frac {P_{\varphi }^{2}}{2m\ell ^{2}\sin ^{2}\theta }}-mg\ell \cos \theta .}Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations,θ˙=Pθm2φ˙=Pφm2sin2θPθ˙=Pφ2m2sin3θcosθmgsinθPφ˙=0.{\displaystyle {\begin{aligned}{\dot {\theta }}&={P_{\theta } \over m\ell ^{2}}\\[6pt]{\dot {\varphi }}&={P_{\varphi } \over m\ell ^{2}\sin ^{2}\theta }\\[6pt]{\dot {P_{\theta }}}&={P_{\varphi }^{2} \over m\ell ^{2}\sin ^{3}\theta }\cos \theta -mg\ell \sin \theta \\[6pt]{\dot {P_{\varphi }}}&=0.\end{aligned}}}MomentumPφ{\displaystyle P_{\varphi }}, which corresponds to the vertical component ofangular momentumLz=sinθ×msinθφ˙{\displaystyle L_{z}=\ell \sin \theta \times m\ell \sin \theta \,{\dot {\varphi }}}, is a constant of motion. That is a consequence of the rotational symmetry of the system around the vertical axis. Being absent from the Hamiltonian,azimuthφ{\displaystyle \varphi } is acyclic coordinate, which implies conservation of its conjugate momentum.

Deriving Hamilton's equations

[edit]

Hamilton's equations can be derived by a calculation with theLagrangianL{\displaystyle {\mathcal {L}}}, generalized positionsqi, and generalized velocitiesqi, wherei=1,,n{\displaystyle i=1,\ldots ,n}.[3] Here we workoff-shell, meaningqi{\displaystyle q^{i}},q˙i{\displaystyle {\dot {q}}^{i}},t{\displaystyle t} are independent coordinates in phase space, not constrained to follow any equations of motion (in particular,q˙i{\displaystyle {\dot {q}}^{i}} is not a derivative ofqi{\displaystyle q^{i}}). Thetotal differential of the Lagrangian is:dL=i(Lqidqi+Lq˙idq˙i)+Ltdt .{\displaystyle \mathrm {d} {\mathcal {L}}=\sum _{i}\left({\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\mathrm {d} q^{i}+{\frac {\partial {\mathcal {L}}}{\partial {\dot {q}}^{i}}}\,\mathrm {d} {\dot {q}}^{i}\right)+{\frac {\partial {\mathcal {L}}}{\partial t}}\,\mathrm {d} t\ .}The generalized momentum coordinates were defined aspi=L/q˙i{\displaystyle p_{i}=\partial {\mathcal {L}}/\partial {\dot {q}}^{i}}, so we may rewrite the equation as:dL=i(Lqidqi+pidq˙i)+Ltdt=i(Lqidqi+d(piq˙i)q˙idpi)+Ltdt.{\displaystyle {\begin{aligned}\mathrm {d} {\mathcal {L}}=&\sum _{i}\left({\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\,\mathrm {d} q^{i}+p_{i}\mathrm {d} {\dot {q}}^{i}\right)+{\frac {\partial {\mathcal {L}}}{\partial t}}\mathrm {d} t\\=&\sum _{i}\left({\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\,\mathrm {d} q^{i}+\mathrm {d} (p_{i}{\dot {q}}^{i})-{\dot {q}}^{i}\,\mathrm {d} p_{i}\right)+{\frac {\partial {\mathcal {L}}}{\partial t}}\,\mathrm {d} t\,.\end{aligned}}}

After rearranging, one obtains:d(ipiq˙iL)=i(Lqidqi+q˙idpi)Ltdt .{\displaystyle \mathrm {d} \!\left(\sum _{i}p_{i}{\dot {q}}^{i}-{\mathcal {L}}\right)=\sum _{i}\left(-{\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\,\mathrm {d} q^{i}+{\dot {q}}^{i}\mathrm {d} p_{i}\right)-{\frac {\partial {\mathcal {L}}}{\partial t}}\,\mathrm {d} t\ .}

The term in parentheses on the left-hand side is just the HamiltonianH=piq˙iL{\textstyle {\mathcal {H}}=\sum p_{i}{\dot {q}}^{i}-{\mathcal {L}}} defined previously, therefore:dH=i(Lqidqi+q˙idpi)Ltdt .{\displaystyle \mathrm {d} {\mathcal {H}}=\sum _{i}\left(-{\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\,\mathrm {d} q^{i}+{\dot {q}}^{i}\,\mathrm {d} p_{i}\right)-{\frac {\partial {\mathcal {L}}}{\partial t}}\,\mathrm {d} t\ .}

One may also calculate the total differential of the HamiltonianH{\displaystyle {\mathcal {H}}} with respect to coordinatesqi{\displaystyle q^{i}},pi{\displaystyle p_{i}},t{\displaystyle t} instead ofqi{\displaystyle q^{i}},q˙i{\displaystyle {\dot {q}}^{i}},t{\displaystyle t}, yielding:dH=i(Hqidqi+Hpidpi)+Htdt .{\displaystyle \mathrm {d} {\mathcal {H}}=\sum _{i}\left({\frac {\partial {\mathcal {H}}}{\partial q^{i}}}\mathrm {d} q^{i}+{\frac {\partial {\mathcal {H}}}{\partial p_{i}}}\mathrm {d} p_{i}\right)+{\frac {\partial {\mathcal {H}}}{\partial t}}\,\mathrm {d} t\ .}

One may now equate these two expressions fordH{\displaystyle d{\mathcal {H}}}, one in terms ofL{\displaystyle {\mathcal {L}}}, the other in terms ofH{\displaystyle {\mathcal {H}}}:i(Lqidqi+q˙idpi)Ltdt = i(Hqidqi+Hpidpi)+Htdt .{\displaystyle \sum _{i}\left(-{\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\mathrm {d} q^{i}+{\dot {q}}^{i}\mathrm {d} p_{i}\right)-{\frac {\partial {\mathcal {L}}}{\partial t}}\,\mathrm {d} t\ =\ \sum _{i}\left({\frac {\partial {\mathcal {H}}}{\partial q^{i}}}\mathrm {d} q^{i}+{\frac {\partial {\mathcal {H}}}{\partial p_{i}}}\mathrm {d} p_{i}\right)+{\frac {\partial {\mathcal {H}}}{\partial t}}\,\mathrm {d} t\ .}

Since these calculations are off-shell, one can equate the respective coefficients ofdqi{\displaystyle \mathrm {d} q^{i}},dpi{\displaystyle \mathrm {d} p_{i}},dt{\displaystyle \mathrm {d} t} on the two sides:Hqi=Lqi,Hpi=q˙i,Ht=Lt .{\displaystyle {\frac {\partial {\mathcal {H}}}{\partial q^{i}}}=-{\frac {\partial {\mathcal {L}}}{\partial q^{i}}}\quad ,\quad {\frac {\partial {\mathcal {H}}}{\partial p_{i}}}={\dot {q}}^{i}\quad ,\quad {\frac {\partial {\mathcal {H}}}{\partial t}}=-{\partial {\mathcal {L}} \over \partial t}\ .}

On-shell, one substitutes parametric functionsqi=qi(t){\displaystyle q^{i}=q^{i}(t)} which define a trajectory in phase space with velocitiesq˙i=ddtqi(t){\displaystyle {\dot {q}}^{i}={\tfrac {d}{dt}}q^{i}(t)}, obeyingLagrange's equations:ddtLq˙iLqi=0 .{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial {\mathcal {L}}}{\partial {\dot {q}}^{i}}}-{\frac {\partial {\mathcal {L}}}{\partial q^{i}}}=0\ .}

Rearranging and writing in terms of the on-shellpi=pi(t){\displaystyle p_{i}=p_{i}(t)} gives:Lqi=p˙i .{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial q^{i}}}={\dot {p}}_{i}\ .}

Thus Lagrange's equations are equivalent to Hamilton's equations:Hqi=p˙i,Hpi=q˙i,Ht=Lt.{\displaystyle {\frac {\partial {\mathcal {H}}}{\partial q^{i}}}=-{\dot {p}}_{i}\quad ,\quad {\frac {\partial {\mathcal {H}}}{\partial p_{i}}}={\dot {q}}^{i}\quad ,\quad {\frac {\partial {\mathcal {H}}}{\partial t}}=-{\frac {\partial {\mathcal {L}}}{\partial t}}\,.}

In the case of time-independentH{\displaystyle {\mathcal {H}}} andL{\displaystyle {\mathcal {L}}}, i.e.H/t=L/t=0{\displaystyle \partial {\mathcal {H}}/\partial t=-\partial {\mathcal {L}}/\partial t=0}, Hamilton's equations consist of2n first-orderdifferential equations, while Lagrange's equations consist ofn second-order equations. Hamilton's equations usually do not reduce the difficulty of finding explicit solutions, but important theoretical results can be derived from them, because coordinates and momenta are independent variables with nearly symmetric roles.

Hamilton's equations have another advantage over Lagrange's equations: if a system has a symmetry, so that some coordinateqi{\displaystyle q_{i}} does not occur in the Hamiltonian (i.e. acyclic coordinate), the corresponding momentum coordinatepi{\displaystyle p_{i}} is conserved along each trajectory, and that coordinate can be reduced to a constant in the other equations of the set. This effectively reduces the problem fromn coordinates to(n − 1) coordinates: this is the basis ofsymplectic reduction in geometry. In the Lagrangian framework, the conservation of momentum also follows immediately, however all the generalized velocitiesq˙i{\displaystyle {\dot {q}}_{i}} still occur in the Lagrangian, and a system of equations inn coordinates still has to be solved.[4]

The Lagrangian and Hamiltonian approaches provide the groundwork for deeper results in classical mechanics, and suggest analogous formulations inquantum mechanics: thepath integral formulation and theSchrödinger equation.

Properties of the Hamiltonian

[edit]

Hamiltonian as the total system energy

[edit]

In its application to a given system, the Hamiltonian is often taken to beH=T+V{\displaystyle {\mathcal {H}}=T+V}

whereT{\displaystyle T} is the kinetic energy andV{\displaystyle V} is the potential energy. Using this relation can be simpler than first calculating the Lagrangian, and then deriving the Hamiltonian from the Lagrangian. However, the relation is not true for all systems.

The relation holds true for nonrelativistic systems when all of the following conditions are satisfied[5][6]V(q,q˙,t)q˙i=0,i{\displaystyle {\frac {\partial V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}=0\;,\quad \forall i}T(q,q˙,t)t=0{\displaystyle {\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial t}}=0}T(q,q˙)=i=1nj=1n(cij(q)q˙iq˙j){\displaystyle T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})=\sum _{i=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{ij}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{j}{\biggr )}}

wheret{\displaystyle t} is time,n{\displaystyle n} is the number of degrees of freedom of the system, and eachcij(q){\displaystyle c_{ij}({\boldsymbol {q}})} is an arbitrary scalar function ofq{\displaystyle {\boldsymbol {q}}}.

In words, this means that the relationH=T+V{\displaystyle {\mathcal {H}}=T+V} holds true ifT{\displaystyle T} does not contain time as an explicit variable (it isscleronomic),V{\displaystyle V} does not contain generalised velocity as an explicit variable, and each term ofT{\displaystyle T} is quadratic in generalised velocity.

Proof

[edit]

Preliminary to this proof, it is important to address an ambiguity in the related mathematical notation. While a change of variables can be used to equateL(p,q,t)=L(q,q˙,t){\displaystyle {\mathcal {L}}({\boldsymbol {p}},{\boldsymbol {q}},t)={\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)},it is important to note thatL(q,q˙,t)q˙iL(p,q,t)q˙i{\displaystyle {\frac {\partial {\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}\neq {\frac {\partial {\mathcal {L}}({\boldsymbol {p}},{\boldsymbol {q}},t)}{\partial {\dot {q}}_{i}}}}.In this case, the right hand side always evaluates to 0. To perform a change of variables inside of a partial derivative, themultivariable chain rule should be used. Hence, to avoid ambiguity, the function arguments of any term inside of a partial derivative should be stated.

Additionally, this proof uses the notationf(a,b,c)=f(a,b){\displaystyle f(a,b,c)=f(a,b)} to imply thatf(a,b,c)c=0{\displaystyle {\frac {\partial f(a,b,c)}{\partial c}}=0}.

Proof

Starting from definitions of the Hamiltonian, generalized momenta, and Lagrangian for ann{\displaystyle n} degrees of freedom systemH=i=1n(piq˙i)L(q,q˙,t){\displaystyle {\mathcal {H}}=\sum _{i=1}^{n}{\biggl (}p_{i}{\dot {q}}_{i}{\biggr )}-{\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}pi(q,q˙,t)=L(q,q˙,t)q˙i{\displaystyle p_{i}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)={\frac {\partial {\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}}L(q,q˙,t)=T(q,q˙,t)V(q,q˙,t){\displaystyle {\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)-V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}

Substituting the generalized momenta into the Hamiltonian givesH=i=1n(L(q,q˙,t)q˙iq˙i)L(q,q˙,t){\displaystyle {\mathcal {H}}=\sum _{i=1}^{n}\left({\frac {\partial {\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-{\mathcal {L}}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}

Substituting the Lagrangian into the result givesH=i=1n((T(q,q˙,t)V(q,q˙,t))q˙iq˙i)(T(q,q˙,t)V(q,q˙,t))=i=1n(T(q,q˙,t)q˙iq˙iV(q,q˙,t)q˙iq˙i)T(q,q˙,t)+V(q,q˙,t){\displaystyle {\begin{aligned}{\mathcal {H}}&=\sum _{i=1}^{n}\left({\frac {\partial \left(T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)-V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)\right)}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-\left(T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)-V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)\right)\\&=\sum _{i=1}^{n}\left({\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}-{\frac {\partial V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)+V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)\end{aligned}}}

Now assume thatV(q,q˙,t)q˙i=0,i{\displaystyle {\frac {\partial V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial {\dot {q}}_{i}}}=0\;,\quad \forall i}

and also assume thatT(q,q˙,t)t=0{\displaystyle {\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial t}}=0}

Applying these assumptions results inH=i=1n(T(q,q˙)q˙iq˙iV(q,t)q˙iq˙i)T(q,q˙)+V(q,t)=i=1n(T(q,q˙)q˙iq˙i)T(q,q˙)+V(q,t){\displaystyle {\begin{aligned}{\mathcal {H}}&=\sum _{i=1}^{n}\left({\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}-{\frac {\partial V({\boldsymbol {q}},t)}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+V({\boldsymbol {q}},t)\\&=\sum _{i=1}^{n}\left({\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+V({\boldsymbol {q}},t)\end{aligned}}}

Next assume that T is of the formT(q,q˙)=i=1nj=1n(cij(q)q˙iq˙j){\displaystyle T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})=\sum _{i=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{ij}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{j}{\biggr )}}

where eachcij(q){\displaystyle c_{ij}({\boldsymbol {q}})} is an arbitrary scalar function ofq{\displaystyle {\boldsymbol {q}}}.

Differentiating this with respect toq˙l{\displaystyle {\dot {q}}_{l}},l[1,n]{\displaystyle l\in [1,n]}, givesT(q,q˙)q˙l=i=1nj=1n([cij(q)q˙iq˙j]q˙l)=i=1nj=1n(cij(q)[q˙iq˙j]q˙l){\displaystyle {\begin{aligned}{\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{l}}}&=\sum _{i=1}^{n}\sum _{j=1}^{n}{\biggl (}{\frac {\partial \left[c_{ij}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{j}\right]}{\partial {\dot {q}}_{l}}}{\biggr )}\\&=\sum _{i=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{ij}({\boldsymbol {q}}){\frac {\partial \left[{\dot {q}}_{i}{\dot {q}}_{j}\right]}{\partial {\dot {q}}_{l}}}{\biggr )}\end{aligned}}}

Splitting the summation, evaluating the partial derivative, and rejoining the summation givesT(q,q˙)q˙l=ilnjln(cij(q)[q˙iq˙j]q˙l)+iln(cil(q)[q˙iq˙l]q˙l)+jln(clj(q)[q˙lq˙j]q˙l)+cll(q)[q˙l2]q˙l=ilnjln(0)+iln(cil(q)q˙i)+jln(clj(q)q˙j)+2cll(q)q˙l=i=1n(cil(q)q˙i)+j=1n(clj(q)q˙j){\displaystyle {\begin{aligned}{\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{l}}}&=\sum _{i\neq l}^{n}\sum _{j\neq l}^{n}{\biggl (}c_{ij}({\boldsymbol {q}}){\frac {\partial \left[{\dot {q}}_{i}{\dot {q}}_{j}\right]}{\partial {\dot {q}}_{l}}}{\biggr )}+\sum _{i\neq l}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\frac {\partial \left[{\dot {q}}_{i}{\dot {q}}_{l}\right]}{\partial {\dot {q}}_{l}}}{\biggr )}+\sum _{j\neq l}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\frac {\partial \left[{\dot {q}}_{l}{\dot {q}}_{j}\right]}{\partial {\dot {q}}_{l}}}{\biggr )}+c_{ll}({\boldsymbol {q}}){\frac {\partial \left[{\dot {q}}_{l}^{2}\right]}{\partial {\dot {q}}_{l}}}\\&=\sum _{i\neq l}^{n}\sum _{j\neq l}^{n}{\biggl (}0{\biggr )}+\sum _{i\neq l}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\dot {q}}_{i}{\biggr )}+\sum _{j\neq l}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\dot {q}}_{j}{\biggr )}+2c_{ll}({\boldsymbol {q}}){\dot {q}}_{l}\\&=\sum _{i=1}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\dot {q}}_{i}{\biggr )}+\sum _{j=1}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\dot {q}}_{j}{\biggr )}\end{aligned}}}

Summing (this multiplied byq˙l{\displaystyle {\dot {q}}_{l}}) overl{\displaystyle l} results inl=1n(T(q,q˙)q˙lq˙l)=l=1n((i=1n(cil(q)q˙i)+j=1n(clj(q)q˙j))q˙l)=l=1ni=1n(cil(q)q˙iq˙l)+l=1nj=1n(clj(q)q˙jq˙l)=i=1nl=1n(cil(q)q˙iq˙l)+l=1nj=1n(clj(q)q˙lq˙j)=T(q,q˙)+T(q,q˙)=2T(q,q˙){\displaystyle {\begin{aligned}\sum _{l=1}^{n}\left({\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{l}}}{\dot {q}}_{l}\right)&=\sum _{l=1}^{n}\left(\left(\sum _{i=1}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\dot {q}}_{i}{\biggr )}+\sum _{j=1}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\dot {q}}_{j}{\biggr )}\right){\dot {q}}_{l}\right)\\&=\sum _{l=1}^{n}\sum _{i=1}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{l}{\biggr )}+\sum _{l=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\dot {q}}_{j}{\dot {q}}_{l}{\biggr )}\\&=\sum _{i=1}^{n}\sum _{l=1}^{n}{\biggl (}c_{il}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{l}{\biggr )}+\sum _{l=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{lj}({\boldsymbol {q}}){\dot {q}}_{l}{\dot {q}}_{j}{\biggr )}\\&=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})\\&=2T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})\end{aligned}}}

This simplification is a result ofEuler's homogeneous function theorem.

Hence, the Hamiltonian becomesH=i=1n(T(q,q˙)q˙iq˙i)T(q,q˙)+V(q,t)=2T(q,q˙)T(q,q˙)+V(q,t)=T(q,q˙)+V(q,t){\displaystyle {\begin{aligned}{\mathcal {H}}&=\sum _{i=1}^{n}\left({\frac {\partial T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}{\partial {\dot {q}}_{i}}}{\dot {q}}_{i}\right)-T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+V({\boldsymbol {q}},t)\\&=2T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})-T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+V({\boldsymbol {q}},t)\\&=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})+V({\boldsymbol {q}},t)\end{aligned}}}

Application to systems of point masses

[edit]

For a system of point masses, the requirement forT{\displaystyle T} to be quadratic in generalised velocity is always satisfied for the case whereT(q,q˙,t)=T(q,q˙){\displaystyle T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}, which is a requirement forH=T+V{\displaystyle {\mathcal {H}}=T+V} anyway.

Proof

Consider the kinetic energy for a system of N point masses. If it is assumed thatT(q,q˙,t)=T(q,q˙){\displaystyle T({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}, then it can be shown thatr˙k(q,q˙,t)=r˙k(q,q˙){\displaystyle {\dot {\mathbf {r} }}_{k}({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)={\dot {\mathbf {r} }}_{k}({\boldsymbol {q}},{\boldsymbol {\dot {q}}})} (SeeScleronomous § Application). Therefore, the kinetic energy isT(q,q˙)=12k=1N(mkr˙k(q,q˙)r˙k(q,q˙)){\displaystyle T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})={\frac {1}{2}}\sum _{k=1}^{N}{\biggl (}m_{k}{\dot {\mathbf {r} }}_{k}({\boldsymbol {q}},{\boldsymbol {\dot {q}}})\cdot {\dot {\mathbf {r} }}_{k}({\boldsymbol {q}},{\boldsymbol {\dot {q}}}){\biggr )}}

The chain rule for many variables can be used to expand the velocityr˙k(q,q˙)=drk(q)dt=i=1n(rk(q)qiq˙i){\displaystyle {\begin{aligned}{\dot {\mathbf {r} }}_{k}({\boldsymbol {q}},{\boldsymbol {\dot {q}}})&={\frac {d\mathbf {r} _{k}({\boldsymbol {q}})}{dt}}\\&=\sum _{i=1}^{n}\left({\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{i}}}{\dot {q}}_{i}\right)\end{aligned}}}

Resulting inT(q,q˙)=12k=1N(mk(i=1n(rk(q)qiq˙i)j=1n(rk(q)qjq˙j)))=k=1Ni=1nj=1n(12mkrk(q)qirk(q)qjq˙iq˙j)=i=1nj=1n(k=1N(12mkrk(q)qirk(q)qj)q˙iq˙j)=i=1nj=1n(cij(q)q˙iq˙j){\displaystyle {\begin{aligned}T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})&={\frac {1}{2}}\sum _{k=1}^{N}\left(m_{k}\left(\sum _{i=1}^{n}\left({\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{i}}}{\dot {q}}_{i}\right)\cdot \sum _{j=1}^{n}\left({\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{j}}}{\dot {q}}_{j}\right)\right)\right)\\&=\sum _{k=1}^{N}\sum _{i=1}^{n}\sum _{j=1}^{n}\left({\frac {1}{2}}m_{k}{\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{i}}}\cdot {\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{j}}}{\dot {q}}_{i}{\dot {q}}_{j}\right)\\&=\sum _{i=1}^{n}\sum _{j=1}^{n}\left(\sum _{k=1}^{N}\left({\frac {1}{2}}m_{k}{\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{i}}}\cdot {\frac {\partial \mathbf {r} _{k}({\boldsymbol {q}})}{\partial q_{j}}}\right){\dot {q}}_{i}{\dot {q}}_{j}\right)\\&=\sum _{i=1}^{n}\sum _{j=1}^{n}{\biggl (}c_{ij}({\boldsymbol {q}}){\dot {q}}_{i}{\dot {q}}_{j}{\biggr )}\end{aligned}}}

This is of the required form.

Conservation of energy

[edit]

If the conditions forH=T+V{\displaystyle {\mathcal {H}}=T+V} are satisfied, then conservation of the Hamiltonian implies conservation of energy. This requires the additional condition thatV{\displaystyle V} does not contain time as an explicit variable.

V(q,q˙,t)t=0{\displaystyle {\frac {\partial V({\boldsymbol {q}},{\boldsymbol {\dot {q}}},t)}{\partial t}}=0}

In summary, the requirements forH=T+V=constant of time{\displaystyle {\mathcal {H}}=T+V={\text{constant of time}}} to be satisfied for a nonrelativistic system are[5][6]

  1. V=V(q){\displaystyle V=V({\boldsymbol {q}})}
  2. T=T(q,q˙){\displaystyle T=T({\boldsymbol {q}},{\boldsymbol {\dot {q}}})}
  3. T{\displaystyle T} is a homogeneous quadratic function inq˙{\displaystyle {\boldsymbol {\dot {q}}}}

Regarding extensions to the Euler-Lagrange formulation which use dissipation functions (SeeLagrangian mechanics § Extensions to include non-conservative forces), e.g. theRayleigh dissipation function, energy is not conserved when a dissipation function has effect. It is possible to explain the link between this and the former requirements by relating the extended and conventional Euler-Lagrange equations: grouping the extended terms into the potential function produces a velocity dependent potential. Hence, the requirements are not satisfied when a dissipation function has effect.

Hamiltonian of a charged particle in an electromagnetic field

[edit]

A sufficient illustration of Hamiltonian mechanics is given by the Hamiltonian of a charged particle in anelectromagnetic field. InCartesian coordinates theLagrangian of a non-relativistic classical particle in an electromagnetic field is (inSI Units):L=i12mx˙i2+iqx˙iAiqφ,{\displaystyle {\mathcal {L}}=\sum _{i}{\tfrac {1}{2}}m{\dot {x}}_{i}^{2}+\sum _{i}q{\dot {x}}_{i}A_{i}-q\varphi ,}whereq is theelectric charge of the particle,φ is theelectric scalar potential, and theAi are the components of themagnetic vector potential that may all explicitly depend onxi{\displaystyle x_{i}} andt{\displaystyle t}.

This Lagrangian, combined withEuler–Lagrange equation, produces theLorentz force lawmx¨=qE+qx˙×B,{\displaystyle m{\ddot {\mathbf {x} }}=q\mathbf {E} +q{\dot {\mathbf {x} }}\times \mathbf {B} \,,}and is calledminimal coupling.

Thecanonical momenta are given by:pi=Lx˙i=mx˙i+qAi.{\displaystyle p_{i}={\frac {\partial {\mathcal {L}}}{\partial {\dot {x}}_{i}}}=m{\dot {x}}_{i}+qA_{i}.}

The Hamiltonian, as theLegendre transformation of the Lagrangian, is therefore:H=ix˙ipiL=i(piqAi)22m+qφ.{\displaystyle {\mathcal {H}}=\sum _{i}{\dot {x}}_{i}p_{i}-{\mathcal {L}}=\sum _{i}{\frac {\left(p_{i}-qA_{i}\right)^{2}}{2m}}+q\varphi .}

This equation is used frequently inquantum mechanics.

Undergauge transformation:AA+f,φφf˙,{\displaystyle \mathbf {A} \rightarrow \mathbf {A} +\nabla f\,,\quad \varphi \rightarrow \varphi -{\dot {f}}\,,}wheref(r,t) is any scalar function of space and time. The aforementioned Lagrangian, the canonical momenta, and the Hamiltonian transform like:LL=L+qdfdt,pp=p+qf,HH=Hqft,{\displaystyle L\rightarrow L'=L+q{\frac {df}{dt}}\,,\quad \mathbf {p} \rightarrow \mathbf {p'} =\mathbf {p} +q\nabla f\,,\quad H\rightarrow H'=H-q{\frac {\partial f}{\partial t}}\,,}which still produces the same Hamilton's equation:Hxi|pi=xi|pi(x˙ipiL)=Lxi|pi=Lxi|piqxi|pidfdt=ddt(Lx˙i|pi+qfxi|pi)=p˙i{\displaystyle {\begin{aligned}\left.{\frac {\partial H'}{\partial {x_{i}}}}\right|_{p'_{i}}&=\left.{\frac {\partial }{\partial {x_{i}}}}\right|_{p'_{i}}({\dot {x}}_{i}p'_{i}-L')=-\left.{\frac {\partial L'}{\partial {x_{i}}}}\right|_{p'_{i}}\\&=-\left.{\frac {\partial L}{\partial {x_{i}}}}\right|_{p'_{i}}-q\left.{\frac {\partial }{\partial {x_{i}}}}\right|_{p'_{i}}{\frac {df}{dt}}\\&=-{\frac {d}{dt}}\left(\left.{\frac {\partial L}{\partial {{\dot {x}}_{i}}}}\right|_{p'_{i}}+q\left.{\frac {\partial f}{\partial {x_{i}}}}\right|_{p'_{i}}\right)\\&=-{\dot {p}}'_{i}\end{aligned}}}

In quantum mechanics, thewave function will also undergo alocalU(1) group transformation[7] during the Gauge Transformation, which implies that all physical results must be invariant under local U(1) transformations.

Relativistic charged particle in an electromagnetic field

[edit]

Therelativistic Lagrangian for a particle (rest massm{\displaystyle m} andchargeq{\displaystyle q}) is given by:

L(t)=mc21x˙(t)2c2+qx˙(t)A(x(t),t)qφ(x(t),t){\displaystyle {\mathcal {L}}(t)=-mc^{2}{\sqrt {1-{\frac {{{\dot {\mathbf {x} }}(t)}^{2}}{c^{2}}}}}+q{\dot {\mathbf {x} }}(t)\cdot \mathbf {A} \left(\mathbf {x} (t),t\right)-q\varphi \left(\mathbf {x} (t),t\right)}

Thus the particle's canonical momentum isp(t)=Lx˙=mx˙1x˙2c2+qA{\displaystyle \mathbf {p} (t)={\frac {\partial {\mathcal {L}}}{\partial {\dot {\mathbf {x} }}}}={\frac {m{\dot {\mathbf {x} }}}{\sqrt {1-{\frac {{\dot {\mathbf {x} }}^{2}}{c^{2}}}}}}+q\mathbf {A} }that is, the sum of the kinetic momentum and the potential momentum.

Solving for the velocity, we getx˙(t)=pqAm2+1c2(pqA)2{\displaystyle {\dot {\mathbf {x} }}(t)={\frac {\mathbf {p} -q\mathbf {A} }{\sqrt {m^{2}+{\frac {1}{c^{2}}}{\left(\mathbf {p} -q\mathbf {A} \right)}^{2}}}}}

So the Hamiltonian isH(t)=x˙pL=cm2c2+(pqA)2+qφ{\displaystyle {\mathcal {H}}(t)={\dot {\mathbf {x} }}\cdot \mathbf {p} -{\mathcal {L}}=c{\sqrt {m^{2}c^{2}+{\left(\mathbf {p} -q\mathbf {A} \right)}^{2}}}+q\varphi }

This results in the force equation (equivalent to theEuler–Lagrange equation)p˙=Hx=qx˙(A)qφ=q(x˙A)qφ{\displaystyle {\dot {\mathbf {p} }}=-{\frac {\partial {\mathcal {H}}}{\partial \mathbf {x} }}=q{\dot {\mathbf {x} }}\cdot ({\boldsymbol {\nabla }}\mathbf {A} )-q{\boldsymbol {\nabla }}\varphi =q{\boldsymbol {\nabla }}({\dot {\mathbf {x} }}\cdot \mathbf {A} )-q{\boldsymbol {\nabla }}\varphi }from which one can deriveddt(mx˙1x˙2c2)=ddt(pqA)=p˙qAtq(x˙)A=q(x˙A)qφqAtq(x˙)A=qE+qx˙×B{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {m{\dot {\mathbf {x} }}}{\sqrt {1-{\frac {{\dot {\mathbf {x} }}^{2}}{c^{2}}}}}}\right)&={\frac {\mathrm {d} }{\mathrm {d} t}}(\mathbf {p} -q\mathbf {A} )={\dot {\mathbf {p} }}-q{\frac {\partial \mathbf {A} }{\partial t}}-q({\dot {\mathbf {x} }}\cdot \nabla )\mathbf {A} \\&=q{\boldsymbol {\nabla }}({\dot {\mathbf {x} }}\cdot \mathbf {A} )-q{\boldsymbol {\nabla }}\varphi -q{\frac {\partial \mathbf {A} }{\partial t}}-q({\dot {\mathbf {x} }}\cdot \nabla )\mathbf {A} \\&=q\mathbf {E} +q{\dot {\mathbf {x} }}\times \mathbf {B} \end{aligned}}}

The above derivation makes use of thevector calculus identity:12(AA)=AJA=A(A)=(A)A+A×(×A).{\displaystyle {\tfrac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)=\mathbf {A} \cdot \mathbf {J} _{\mathbf {A} }=\mathbf {A} \cdot (\nabla \mathbf {A} )=(\mathbf {A} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {A} ).}

An equivalent expression for the Hamiltonian as function of the relativistic (kinetic) momentum,P=γmx˙(t)=pqA{\displaystyle \mathbf {P} =\gamma m{\dot {\mathbf {x} }}(t)=\mathbf {p} -q\mathbf {A} }, isH(t)=x˙(t)P(t)+mc2γ+qφ(x(t),t)=γmc2+qφ(x(t),t)=E+V{\displaystyle {\mathcal {H}}(t)={\dot {\mathbf {x} }}(t)\cdot \mathbf {P} (t)+{\frac {mc^{2}}{\gamma }}+q\varphi (\mathbf {x} (t),t)=\gamma mc^{2}+q\varphi (\mathbf {x} (t),t)=E+V}

This has the advantage that kinetic momentumP{\displaystyle \mathbf {P} } can be measured experimentally whereas canonical momentump{\displaystyle \mathbf {p} } cannot. Notice that the Hamiltonian (total energy) can be viewed as the sum of therelativistic energy (kinetic+rest),E=γmc2{\displaystyle E=\gamma mc^{2}}, plus thepotential energy,V=qφ{\displaystyle V=q\varphi }.

From symplectic geometry to Hamilton's equations

[edit]

Geometry of Hamiltonian systems

[edit]

The Hamiltonian can induce asymplectic structure on asmooth even-dimensional manifoldM2n in several equivalent ways, the best known being the following:[8]

As aclosednondegeneratesymplectic2-form ω. According toDarboux's theorem, in a small neighbourhood around any point onM there exist suitable local coordinatesp1,,pn, q1,,qn{\displaystyle p_{1},\cdots ,p_{n},\ q_{1},\cdots ,q_{n}} (canonical orsymplectic coordinates) in which thesymplectic form becomes:ω=i=1ndpidqi.{\displaystyle \omega =\sum _{i=1}^{n}dp_{i}\wedge dq_{i}\,.}The formω{\displaystyle \omega } induces anatural isomorphism of thetangent space with thecotangent space:TxMTxM{\displaystyle T_{x}M\cong T_{x}^{*}M}. This is done by mapping a vectorξTxM{\displaystyle \xi \in T_{x}M} to the 1-formωξTxM{\displaystyle \omega _{\xi }\in T_{x}^{*}M}, whereωξ(η)=ω(η,ξ){\displaystyle \omega _{\xi }(\eta )=\omega (\eta ,\xi )} for allηTxM{\displaystyle \eta \in T_{x}M}. Due to thebilinearity and non-degeneracy ofω{\displaystyle \omega }, and the fact thatdimTxM=dimTxM{\displaystyle \dim T_{x}M=\dim T_{x}^{*}M}, the mappingξωξ{\displaystyle \xi \to \omega _{\xi }} is indeed alinear isomorphism. This isomorphism isnatural in that it does not change with change of coordinates onM.{\displaystyle M.} Repeating over allxM{\displaystyle x\in M}, we end up with an isomorphismJ1:Vect(M)Ω1(M){\displaystyle J^{-1}:{\text{Vect}}(M)\to \Omega ^{1}(M)} between the infinite-dimensional space of smooth vector fields and that of smooth 1-forms. For everyf,gC(M,R){\displaystyle f,g\in C^{\infty }(M,\mathbb {R} )} andξ,ηVect(M){\displaystyle \xi ,\eta \in {\text{Vect}}(M)},J1(fξ+gη)=fJ1(ξ)+gJ1(η).{\displaystyle J^{-1}(f\xi +g\eta )=fJ^{-1}(\xi )+gJ^{-1}(\eta ).}

(In algebraic terms, one would say that theC(M,R){\displaystyle C^{\infty }(M,\mathbb {R} )}-modulesVect(M){\displaystyle {\text{Vect}}(M)} andΩ1(M){\displaystyle \Omega ^{1}(M)} are isomorphic). IfHC(M×Rt,R){\displaystyle H\in C^{\infty }(M\times \mathbb {R} _{t},\mathbb {R} )}, then, for every fixedtRt{\displaystyle t\in \mathbb {R} _{t}},dHΩ1(M){\displaystyle dH\in \Omega ^{1}(M)}, andJ(dH)Vect(M){\displaystyle J(dH)\in {\text{Vect}}(M)}.J(dH){\displaystyle J(dH)} is known as aHamiltonian vector field. The respective differential equation onM{\displaystyle M}x˙=J(dH)(x){\displaystyle {\dot {x}}=J(dH)(x)}is calledHamilton's equation. Herex=x(t){\displaystyle x=x(t)} andJ(dH)(x)TxM{\displaystyle J(dH)(x)\in T_{x}M} is the (time-dependent) value of the vector fieldJ(dH){\displaystyle J(dH)} atxM{\displaystyle x\in M}.

A Hamiltonian system may be understood as afiber bundleE overtimeR, with thefiberEt being the position space at timetR. The Lagrangian is thus a function on thejet bundleJ overE; taking the fiberwiseLegendre transform of the Lagrangian produces a function on the dual bundle over time whose fiber att is thecotangent spaceTEt, which comes equipped with a naturalsymplectic form, and this latter function is the Hamiltonian. The correspondence between Lagrangian and Hamiltonian mechanics is achieved with thetautological one-form.

Anysmooth real-valued functionH on asymplectic manifold can be used to define aHamiltonian system. The functionH is known as "the Hamiltonian" or "the energy function." The symplectic manifold is then called thephase space. The Hamiltonian induces a specialvector field on the symplectic manifold, known as theHamiltonian vector field.

The Hamiltonian vector field induces aHamiltonian flow on the manifold. This is a one-parameter family of transformations of the manifold (the parameter of the curves is commonly called "the time"); in other words, anisotopy ofsymplectomorphisms, starting with the identity. ByLiouville's theorem, each symplectomorphism preserves thevolume form on thephase space. The collection of symplectomorphisms induced by the Hamiltonian flow is commonly called "the Hamiltonian mechanics" of the Hamiltonian system.

The symplectic structure induces aPoisson bracket. The Poisson bracket gives the space of functions on the manifold the structure of aLie algebra.

IfF andG are smooth functions onM then the smooth functionω(J(dF),J(dG)) is properly defined; it is called aPoisson bracket of functionsF andG and is denoted{F,G}. The Poisson bracket has the following properties:

  1. bilinearity
  2. antisymmetry
  3. Leibniz rule:{F1F2,G}=F1{F2,G}+F2{F1,G}{\displaystyle \{F_{1}\cdot F_{2},G\}=F_{1}\{F_{2},G\}+F_{2}\{F_{1},G\}}
  4. Jacobi identity:{{H,F},G}+{{F,G},H}+{{G,H},F}0{\displaystyle \{\{H,F\},G\}+\{\{F,G\},H\}+\{\{G,H\},F\}\equiv 0}
  5. non-degeneracy: if the pointx onM is not critical forF then a smooth functionG exists such that{F,G}(x)0{\displaystyle \{F,G\}(x)\neq 0}.

Given a functionfddtf=tf+{f,H},{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}f={\frac {\partial }{\partial t}}f+\left\{f,{\mathcal {H}}\right\},}if there is aprobability distributionρ, then (since the phase space velocity(p˙i,q˙i){\displaystyle ({\dot {p}}_{i},{\dot {q}}_{i})} has zero divergence and probability is conserved) its convective derivative can be shown to be zero and sotρ={ρ,H}{\displaystyle {\frac {\partial }{\partial t}}\rho =-\left\{\rho ,{\mathcal {H}}\right\}}

This is calledLiouville's theorem. Everysmooth functionG over thesymplectic manifold generates a one-parameter family ofsymplectomorphisms and if{G,H} = 0, thenG is conserved and the symplectomorphisms aresymmetry transformations.

A Hamiltonian may have multiple conserved quantitiesGi. If the symplectic manifold has dimension2n and there aren functionally independent conserved quantitiesGi which are in involution (i.e.,{Gi,Gj} = 0), then the Hamiltonian isLiouville integrable. TheLiouville–Arnold theorem says that, locally, any Liouville integrable Hamiltonian can be transformed via a symplectomorphism into a new Hamiltonian with the conserved quantitiesGi as coordinates; the new coordinates are calledaction–angle coordinates. The transformed Hamiltonian depends only on theGi, and hence the equations of motion have the simple formG˙i=0,φ˙i=Fi(G){\displaystyle {\dot {G}}_{i}=0\quad ,\quad {\dot {\varphi }}_{i}=F_{i}(G)}for some functionF.[9] There is an entire field focusing on small deviations from integrable systems governed by theKAM theorem.

The integrability of Hamiltonian vector fields is an open question. In general, Hamiltonian systems arechaotic; concepts of measure, completeness, integrability and stability are poorly defined.

Riemannian manifolds

[edit]

An important special case consists of those Hamiltonians that arequadratic forms, that is, Hamiltonians that can be written asH(q,p)=12p,pq{\displaystyle {\mathcal {H}}(q,p)={\tfrac {1}{2}}\langle p,p\rangle _{q}}where⟨ , ⟩q is a smoothly varyinginner product on thefibersT
q
Q
, thecotangent space to the pointq in theconfiguration space, sometimes called a cometric. This Hamiltonian consists entirely of the kinetic term.

If one considers aRiemannian manifold or apseudo-Riemannian manifold, theRiemannian metric induces a linear isomorphism between the tangent and cotangent bundles. (SeeMusical isomorphism). Using this isomorphism, one can define a cometric. (In coordinates, the matrix defining the cometric is the inverse of the matrix defining the metric.) The solutions to theHamilton–Jacobi equations for this Hamiltonian are then the same as thegeodesics on the manifold. In particular, theHamiltonian flow in this case is the same thing as thegeodesic flow. The existence of such solutions, and the completeness of the set of solutions, are discussed in detail in the article ongeodesics. See alsoGeodesics as Hamiltonian flows.

Sub-Riemannian manifolds

[edit]

When the cometric is degenerate, then it is not invertible. In this case, one does not have a Riemannian manifold, as one does not have a metric. However, the Hamiltonian still exists. In the case where the cometric is degenerate at every pointq of the configuration space manifoldQ, so that therank of the cometric is less than the dimension of the manifoldQ, one has asub-Riemannian manifold.

The Hamiltonian in this case is known as asub-Riemannian Hamiltonian. Every such Hamiltonian uniquely determines the cometric, and vice versa. This implies that everysub-Riemannian manifold is uniquely determined by its sub-Riemannian Hamiltonian, and that the converse is true: every sub-Riemannian manifold has a unique sub-Riemannian Hamiltonian. The existence of sub-Riemannian geodesics is given by theChow–Rashevskii theorem.

The continuous, real-valuedHeisenberg group provides a simple example of a sub-Riemannian manifold. For the Heisenberg group, the Hamiltonian is given byH(x,y,z,px,py,pz)=12(px2+py2).{\displaystyle {\mathcal {H}}\left(x,y,z,p_{x},p_{y},p_{z}\right)={\tfrac {1}{2}}\left(p_{x}^{2}+p_{y}^{2}\right).}pz is not involved in the Hamiltonian.

Poisson algebras

[edit]

Hamiltonian systems can be generalized in various ways. Instead of simply looking at thealgebra ofsmooth functions over asymplectic manifold, Hamiltonian mechanics can be formulated on generalcommutativeunitalrealPoisson algebras. Astate is acontinuouslinear functional on the Poisson algebra (equipped with some suitabletopology) such that for any elementA of the algebra,A2 maps to a nonnegative real number.

A further generalization is given byNambu dynamics.

Generalization to quantum mechanics through Poisson bracket

[edit]

Hamilton's equations above work well forclassical mechanics, but not forquantum mechanics, since the differential equations discussed assume that one can specify the exact position and momentum of the particle simultaneously at any point in time. However, the equations can be further generalized to then be extended to apply to quantum mechanics as well as to classical mechanics, through the deformation of thePoisson algebra overp andq to the algebra ofMoyal brackets.

Specifically, the more general form of the Hamilton's equation readsdfdt={f,H}+ft,{\displaystyle {\frac {\mathrm {d} f}{\mathrm {d} t}}=\left\{f,{\mathcal {H}}\right\}+{\frac {\partial f}{\partial t}},}wheref is some function ofp andq, andH is the Hamiltonian. To find out the rules for evaluating aPoisson bracket without resorting to differential equations, seeLie algebra; a Poisson bracket is the name for the Lie bracket in aPoisson algebra. These Poisson brackets can then be extended toMoyal brackets comporting to an inequivalent Lie algebra, as proven byHilbrand J. Groenewold, and thereby describe quantum mechanical diffusion in phase space (SeePhase space formulation andWigner–Weyl transform). This more algebraic approach not only permits ultimately extendingprobability distributions inphase space toWigner quasi-probability distributions, but, at the mere Poisson bracket classical setting, also provides more power in helping analyze the relevantconserved quantities in a system.

See also

[edit]

References

[edit]
  1. ^Hamilton, William Rowan, Sir (1833).On a general method of expressing the paths of light, & of the planets, by the coefficients of a characteristic function. Printed by P.D. Hardy.OCLC 68159539.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^Landau & Lifshitz 1976, pp. 33–34
  3. ^This derivation is along the lines as given inArnol'd 1989, pp. 65–66
  4. ^Goldstein, Poole & Safko 2002, pp. 347–349
  5. ^abMalham 2016, pp. 49–50
  6. ^abLandau & Lifshitz 1976, p. 14
  7. ^Zinn-Justin, Jean; Guida, Riccardo (2008-12-04)."Gauge invariance".Scholarpedia.3 (12): 8287.Bibcode:2008SchpJ...3.8287Z.doi:10.4249/scholarpedia.8287.ISSN 1941-6016.
  8. ^Arnol'd, Kozlov & Neĩshtadt 1988, §3. Hamiltonian mechanics.
  9. ^Arnol'd, Kozlov & Neĩshtadt 1988

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toHamiltonian mechanics.
Computational
Mathematical
software
Discrete
Analysis
Probability theory
Mathematical
physics
Algebraic
structures
Decision sciences
Other applications
Related
Organizations
Divisions
Approaches
Classical
Modern
Interdisciplinary
Related
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hamiltonian_mechanics&oldid=1284189069"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp