Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hahn decomposition theorem

From Wikipedia, the free encyclopedia
Measurability theorem

Inmathematics, theHahn decomposition theorem, named after theAustrianmathematicianHans Hahn, states that for anymeasurable space(X,Σ){\displaystyle (X,\Sigma )} and anysigned measureμ{\displaystyle \mu } defined on theσ{\displaystyle \sigma }-algebraΣ{\displaystyle \Sigma }, there exist twoΣ{\displaystyle \Sigma }-measurable sets,P{\displaystyle P} andN{\displaystyle N}, ofX{\displaystyle X} such that:

  1. PN=X{\displaystyle P\cup N=X} andPN={\displaystyle P\cap N=\varnothing }.
  2. For everyEΣ{\displaystyle E\in \Sigma } such thatEP{\displaystyle E\subseteq P}, one hasμ(E)0{\displaystyle \mu (E)\geq 0}, i.e.,P{\displaystyle P} is apositive set forμ{\displaystyle \mu }.
  3. For everyEΣ{\displaystyle E\in \Sigma } such thatEN{\displaystyle E\subseteq N}, one hasμ(E)0{\displaystyle \mu (E)\leq 0}, i.e.,N{\displaystyle N} is a negative set forμ{\displaystyle \mu }.

Moreover, this decomposition isessentially unique, meaning that for any other pair(P,N){\displaystyle (P',N')} ofΣ{\displaystyle \Sigma }-measurable subsets ofX{\displaystyle X} fulfilling the three conditions above, thesymmetric differencesPP{\displaystyle P\triangle P'} andNN{\displaystyle N\triangle N'} areμ{\displaystyle \mu }-null sets in the strong sense that everyΣ{\displaystyle \Sigma }-measurable subset of them has zero measure. The pair(P,N){\displaystyle (P,N)} is then called aHahn decomposition of the signed measureμ{\displaystyle \mu }.

Jordan measure decomposition

[edit]

A consequence of the Hahn decomposition theorem is theJordan decomposition theorem, which states that every signed measureμ{\displaystyle \mu } defined onΣ{\displaystyle \Sigma } has aunique decomposition into a differenceμ=μ+μ{\displaystyle \mu =\mu ^{+}-\mu ^{-}} of two positive measures,μ+{\displaystyle \mu ^{+}} andμ{\displaystyle \mu ^{-}}, at least one of which is finite, such thatμ+(E)=0{\displaystyle {\mu ^{+}}(E)=0} for everyΣ{\displaystyle \Sigma }-measurable subsetEN{\displaystyle E\subseteq N} andμ(E)=0{\displaystyle {\mu ^{-}}(E)=0} for everyΣ{\displaystyle \Sigma }-measurable subsetEP{\displaystyle E\subseteq P}, for any Hahn decomposition(P,N){\displaystyle (P,N)} ofμ{\displaystyle \mu }. We callμ+{\displaystyle \mu ^{+}} andμ{\displaystyle \mu ^{-}} thepositive andnegative part ofμ{\displaystyle \mu }, respectively. The pair(μ+,μ){\displaystyle (\mu ^{+},\mu ^{-})} is called aJordan decomposition (or sometimesHahn–Jordan decomposition) ofμ{\displaystyle \mu }. The two measures can be defined as

μ+(E):=μ(EP)andμ(E):=μ(EN){\displaystyle {\mu ^{+}}(E):=\mu (E\cap P)\qquad {\text{and}}\qquad {\mu ^{-}}(E):=-\mu (E\cap N)}

for everyEΣ{\displaystyle E\in \Sigma } and any Hahn decomposition(P,N){\displaystyle (P,N)} ofμ{\displaystyle \mu }.

Note that the Jordan decomposition is unique, while the Hahn decomposition is only essentially unique.

The Jordan decomposition has the following corollary: Given a Jordan decomposition(μ+,μ){\displaystyle (\mu ^{+},\mu ^{-})} of a finite signed measureμ{\displaystyle \mu }, one has

μ+(E)=supBΣ, BEμ(B)andμ(E)=infBΣ, BEμ(B){\displaystyle {\mu ^{+}}(E)=\sup _{B\in \Sigma ,~B\subseteq E}\mu (B)\quad {\text{and}}\quad {\mu ^{-}}(E)=-\inf _{B\in \Sigma ,~B\subseteq E}\mu (B)}

for anyE{\displaystyle E} inΣ{\displaystyle \Sigma }. Furthermore, ifμ=ν+ν{\displaystyle \mu =\nu ^{+}-\nu ^{-}} for a pair(ν+,ν){\displaystyle (\nu ^{+},\nu ^{-})} of finite non-negative measures onX{\displaystyle X}, then

ν+μ+andνμ.{\displaystyle \nu ^{+}\geq \mu ^{+}\quad {\text{and}}\quad \nu ^{-}\geq \mu ^{-}.}

The last expression means that the Jordan decomposition is theminimal decomposition ofμ{\displaystyle \mu } into a difference of non-negative measures. This is theminimality property of the Jordan decomposition.

Proof of the Jordan decomposition: For an elementary proof of the existence, uniqueness, and minimality of the Jordan measure decomposition seeFischer (2012).

Proof of the Hahn decomposition theorem

[edit]

Preparation: Assume thatμ{\displaystyle \mu } does not take the value{\displaystyle -\infty } (otherwise decompose according toμ{\displaystyle -\mu }). As mentioned above, a negative set is a setAΣ{\displaystyle A\in \Sigma } such thatμ(B)0{\displaystyle \mu (B)\leq 0} for everyΣ{\displaystyle \Sigma }-measurable subsetBA{\displaystyle B\subseteq A}.

Claim: Suppose thatDΣ{\displaystyle D\in \Sigma } satisfiesμ(D)0{\displaystyle \mu (D)\leq 0}. Then there is a negative setAD{\displaystyle A\subseteq D} such thatμ(A)μ(D){\displaystyle \mu (A)\leq \mu (D)}.

Proof of the claim: DefineA0:=D{\displaystyle A_{0}:=D}.Inductively assume fornN0{\displaystyle n\in \mathbb {N} _{0}} thatAnD{\displaystyle A_{n}\subseteq D} has been constructed. Let

tn:=sup({μ(B)BΣ and BAn}){\displaystyle t_{n}:=\sup(\{\mu (B)\mid B\in \Sigma ~{\text{and}}~B\subseteq A_{n}\})}

denote thesupremum ofμ(B){\displaystyle \mu (B)} over all theΣ{\displaystyle \Sigma }-measurable subsetsB{\displaystyle B} ofAn{\displaystyle A_{n}}. This supremum mighta priori be infinite. As the empty set{\displaystyle \varnothing } is a possible candidate forB{\displaystyle B} in the definition oftn{\displaystyle t_{n}}, and asμ()=0{\displaystyle \mu (\varnothing )=0}, we havetn0{\displaystyle t_{n}\geq 0}. By the definition oftn{\displaystyle t_{n}}, there then exists aΣ{\displaystyle \Sigma }-measurable subsetBnAn{\displaystyle B_{n}\subseteq A_{n}} satisfying

μ(Bn)min(1,tn2).{\displaystyle \mu (B_{n})\geq \min \!\left(1,{\frac {t_{n}}{2}}\right).}

SetAn+1:=AnBn{\displaystyle A_{n+1}:=A_{n}\setminus B_{n}} to finish the induction step. Finally, define

A:=D\n=0Bn.{\displaystyle A:=D{\Bigg \backslash }\bigcup _{n=0}^{\infty }B_{n}.}

As the sets(Bn)n=0{\displaystyle (B_{n})_{n=0}^{\infty }} are disjoint subsets ofD{\displaystyle D}, it follows from thesigma additivity of the signed measureμ{\displaystyle \mu } that

μ(D)=μ(A)+n=0μ(Bn)μ(A)+n=0min(1,tn2)μ(A).{\displaystyle \mu (D)=\mu (A)+\sum _{n=0}^{\infty }\mu (B_{n})\geq \mu (A)+\sum _{n=0}^{\infty }\min \!\left(1,{\frac {t_{n}}{2}}\right)\geq \mu (A).}

This shows thatμ(A)μ(D){\displaystyle \mu (A)\leq \mu (D)}. AssumeA{\displaystyle A} were not a negative set. This means that there would exist aΣ{\displaystyle \Sigma }-measurable subsetBA{\displaystyle B\subseteq A} that satisfiesμ(B)>0{\displaystyle \mu (B)>0}. Thentnμ(B){\displaystyle t_{n}\geq \mu (B)} for everynN0{\displaystyle n\in \mathbb {N} _{0}}, so theseries on the right would have to diverge to+{\displaystyle +\infty }, implying thatμ(D)=+{\displaystyle \mu (D)=+\infty }, which is a contradiction, sinceμ(D)0{\displaystyle \mu (D)\leq 0}. Therefore,A{\displaystyle A} must be a negative set.

Construction of the decomposition: SetN0={\displaystyle N_{0}=\varnothing }. Inductively, givenNn{\displaystyle N_{n}}, define

sn:=inf({μ(D)DΣ and DXNn}).{\displaystyle s_{n}:=\inf(\{\mu (D)\mid D\in \Sigma ~{\text{and}}~D\subseteq X\setminus N_{n}\}).}

as theinfimum ofμ(D){\displaystyle \mu (D)} over all theΣ{\displaystyle \Sigma }-measurable subsetsD{\displaystyle D} ofXNn{\displaystyle X\setminus N_{n}}. This infimum mighta priori be{\displaystyle -\infty }. As{\displaystyle \varnothing } is a possible candidate forD{\displaystyle D} in the definition ofsn{\displaystyle s_{n}}, and asμ()=0{\displaystyle \mu (\varnothing )=0}, we havesn0{\displaystyle s_{n}\leq 0}. Hence, there exists aΣ{\displaystyle \Sigma }-measurable subsetDnXNn{\displaystyle D_{n}\subseteq X\setminus N_{n}} such that

μ(Dn)max(sn2,1)0.{\displaystyle \mu (D_{n})\leq \max \!\left({\frac {s_{n}}{2}},-1\right)\leq 0.}

By the claim above, there is a negative setAnDn{\displaystyle A_{n}\subseteq D_{n}} such thatμ(An)μ(Dn){\displaystyle \mu (A_{n})\leq \mu (D_{n})}. SetNn+1:=NnAn{\displaystyle N_{n+1}:=N_{n}\cup A_{n}} to finish the induction step. Finally, define

N:=n=0An.{\displaystyle N:=\bigcup _{n=0}^{\infty }A_{n}.}

As the sets(An)n=0{\displaystyle (A_{n})_{n=0}^{\infty }} are disjoint, we have for everyΣ{\displaystyle \Sigma }-measurable subsetBN{\displaystyle B\subseteq N} that

μ(B)=n=0μ(BAn){\displaystyle \mu (B)=\sum _{n=0}^{\infty }\mu (B\cap A_{n})}

by the sigma additivity ofμ{\displaystyle \mu }. In particular, this shows thatN{\displaystyle N} is a negative set. Next, defineP:=XN{\displaystyle P:=X\setminus N}. IfP{\displaystyle P} were not a positive set, there would exist aΣ{\displaystyle \Sigma }-measurable subsetDP{\displaystyle D\subseteq P} withμ(D)<0{\displaystyle \mu (D)<0}. Thensnμ(D){\displaystyle s_{n}\leq \mu (D)} for allnN0{\displaystyle n\in \mathbb {N} _{0}} and[clarification needed]

μ(N)=n=0μ(An)n=0max(sn2,1)=,{\displaystyle \mu (N)=\sum _{n=0}^{\infty }\mu (A_{n})\leq \sum _{n=0}^{\infty }\max \!\left({\frac {s_{n}}{2}},-1\right)=-\infty ,}

which is not allowed forμ{\displaystyle \mu }. Therefore,P{\displaystyle P} is a positive set.

Proof of the uniqueness statement:Suppose that(N,P){\displaystyle (N',P')} is another Hahn decomposition ofX{\displaystyle X}. ThenPN{\displaystyle P\cap N'} is a positive set and also a negative set. Therefore, every measurable subset of it has measure zero. The same applies toNP{\displaystyle N\cap P'}. As

PP=NN=(PN)(NP),{\displaystyle P\triangle P'=N\triangle N'=(P\cap N')\cup (N\cap P'),}

this completes the proof.Q.E.D.

References

[edit]
  • Billingsley, Patrick (1995).Probability and Measure -- Third Edition. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons.ISBN 0-471-00710-2.
  • Fischer, Tom (2012). "Existence, uniqueness, and minimality of the Jordan measure decomposition".arXiv:1206.5449 [math.ST].

External links

[edit]
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hahn_decomposition_theorem&oldid=1176678055"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp