Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gymnosperm

From Wikipedia, the free encyclopedia
(Redirected fromGymnospermae)
Clade of non-flowering, naked-seeded vascular plants
Not to be confused with the flowering plant generaGymnosperma andGymnospermium.

Gymnosperm
Various gymnosperms.
Scientific classificationEdit this classification
Kingdom:Plantae
Clade:Tracheophytes
Clade:Spermatophytes
Clade:Gymnospermae
Living orders[1]

Thegymnosperms (/ˈɪmnəˌspɜːrmz,-n-/ nə-spurmz, -⁠noh-;lit.'revealed seeds') are a group of woody, perennialseed-producing plants, typically lacking the protective outer covering which surrounds the seeds in flowering plants, that includeconifers,cycads,Ginkgo, andgnetophytes, forming the cladeGymnospermae.[2] The termgymnosperm comes from the composite word inGreek:γυμνόσπερμος (γυμνός,gymnos, 'naked' andσπέρμα,sperma, 'seed'), and literally means 'naked seeds'. The name is based on the unenclosed condition of their seeds (calledovules in their unfertilized state). The non-encased condition of their seeds contrasts with the seeds and ovules of flowering plants (angiosperms), which are enclosed within anovary. Gymnosperm seeds develop either on the surface of scales orleaves, which are often modified to formcones, or on their own as inyew,Torreya, andGinkgo.

The life cycle of a gymnosperm involvesalternation of generations, with a dominantdiploidsporophyte phase, and a reducedhaploidgametophyte phase, which is dependent on the sporophytic phase.[3] The term "gymnosperm" is often used inpaleobotany to refer to (theparaphyletic group of) all non-angiosperm seed plants. In that case, to specify the modernmonophyletic group of gymnosperms, the termAcrogymnospermae is sometimes used.[4]

The gymnosperms andangiosperms together constitute thespermatophytes or seed plants. The spermatophytes are subdivided into fivedivisions, the angiosperms and four divisions of gymnosperms: theCycadophyta,Ginkgophyta,Gnetophyta, andPinophyta (also known as Coniferophyta). Newer classification place the gnetophytes among the conifers.[5] Numerous extinct seed plant groups are recognised including those consideredpteridosperms/seed ferns, as well other groups like the Bennettitales.[6]

By far the largest group of living gymnosperms are the conifers (pines, cypresses, and relatives), followed by cycads, gnetophytes (Gnetum,Ephedra andWelwitschia), andGinkgo biloba (a single living species). About 65% of gymnosperms aredioecious,[7] but conifers are almost allmonoecious.[8] Some genera haveectomycorrhiza fungal associations with roots (Pinus),[9] while in some others (Cycas) small specialised roots called coralloid roots are associated with nitrogen-fixingcyanobacteria.[10]

Diversity and origin

[edit]
Encephalartos sclavoi cone, about 30 cm long

Over 1,000 living species of gymnosperm exist.[11] It was previously widely accepted that the gymnosperms originated in theLate Carboniferous period, replacing thelycopsid rainforests of the tropical region, but more recent phylogenetic evidence indicates that they diverged from the ancestors ofangiosperms during theEarly Carboniferous.[12][13] The radiation of gymnosperms during the late Carboniferous appears to have resulted from a wholegenome duplication event around319 million years ago.[14] Early characteristics of seed plants are evident in fossilprogymnosperms of the lateDevonian period around 383 million years ago. It has been suggested that during the mid-Mesozoic era, pollination of some extinct groups of gymnosperms was by extinct species ofscorpionflies that had specializedproboscis for feeding on pollination drops. The scorpionflies likely engaged in pollination mutualisms with gymnosperms, long before the similar and independent coevolution of nectar-feeding insects on angiosperms.[15][16] Evidence has also been found that mid-Mesozoic gymnosperms were pollinated byKalligrammatid lacewings, a now-extinct family with members which (in an example ofconvergent evolution) resembled the modern butterflies that arose far later.[17]

Zamia integrifolia, a cycad native to Florida

All gymnosperms areperennialwoody plants,[18] Unlike in other extant gymnosperms the soft and highlyparenchymatous wood in cycads is poorly lignified,[19] and their main structural support comes from an armor of sclerenchymatous leaf bases covering the stem,[20] with the exception of species with underground stems.[21] There are noherbaceous gymnosperms and compared to angiosperms they occupy fewerecological niches, but have evolved both parasites (Parasitaxus),epiphytes (Zamia pseudoparasitica) andrheophytes (Retrophyllum minus).[22]

Conifers are by far the most abundant extant group of gymnosperms with six to eight families, with a total of 65–70 genera and 600–630 species (696 accepted names).[23] Most conifers areevergreens.[24] Theleaves of many conifers are long, thin and needle-like, while other species, including mostCupressaceae and somePodocarpaceae, have flat, triangular scale-like leaves.Agathis in Araucariaceae andNageia in Podocarpaceae have broad, flat strap-shaped leaves.[citation needed]

Cycads, small palm-like trees,[2] are the next most abundant group of gymnosperms, with two or three families, 11 genera, and approximately 338 species. A majority of cycads are native to tropical climates and are most abundantly found in regions near the equator. The other extant groups are the 95–100 species ofGnetophytes and one species ofGinkgo. The ginkgo or maidenhair trees are tall and have bilobed leaves, while gnetophytes are a diverse groups of plants and shrubs including the horizontally growingwelwitschia[6]

Today, gymnosperms are the most threatened of all plant groups.[25]

Classification

[edit]
Phylogeny of Gymnosperms[26][27][28][29]
Araucariales
Cupressales
Further information:Spermatophyte

A formal classification of the living gymnosperms is the "Acrogymnospermae", which form amonophyletic group within thespermatophytes.[30][31] The wider "Gymnospermae" group includes extinct gymnosperms and is thought to beparaphyletic. The fossil record of gymnosperms includes many distinctivetaxa that do not belong to the four modern groups, including seed-bearing trees that have a somewhatfern-like vegetative morphology (the so-called "seed ferns" orpteridosperms).[32] When fossil gymnosperms such as these and theBennettitales,glossopterids, andCaytonia are considered, it is clear that angiosperms are nested within a larger gymnospermae clade, although which group of gymnosperms is their closest relative remains unclear.

The extant gymnosperms include 12 main families and 83 genera which contain more than 1000 known species.[11][31][33]

SubclassCycadidae

SubclassGinkgoidae

SubclassGnetidae

SubclassPinidae

Extinct groupings

[edit]

Life cycle

[edit]
Example of gymnosperm lifecycle

Gymnosperms, like allvascular plants, have a sporophyte-dominant life cycle, which means they spend most of their life cycle with diploid cells, while thegametophyte (gamete-bearing phase) is relatively short-lived. Like allseed plants, they areheterosporous, having two spore types,microspores (male) produced inmicrosporangium andmegaspores (female) produced inmegasporangium that are typically present in pollen cones or ovulate cones respectively. The microsporangium is carried bymicrosporophyll (modified leaf) and seeds are carried by ovuliferous scales in the male and female cones respectively.[2][34] The exception is the females in the cycad genusCycas, which form a loose structure called megasporophylls instead of cones.[35] As with all heterosporous plants, the gametophytes develop within the spore wall. Pollen grains (microgametophytes) mature from microspores, and ultimately produce sperm cells.[34] Megagametophytes develop from megaspores and are retained within the ovule. Gymnosperms produce multiplearchegonia, which produce the female gametes.[citation needed]

During pollination, pollen grains are physically transferred between plants from the pollen cone to the ovule. Pollen is usually moved by wind or insects. Whole grains enter each ovule through a microscopic gap in the ovule coat (integument) called the micropyle. The pollen grains mature further inside the ovule and produce sperm cells. Two main modes of fertilization are found in gymnosperms. Cycads andGinkgo haveflagellated motile sperm[36] that swim directly to the egg inside the ovule, whereas conifers andgnetophytes have sperm with no flagella that are moved along apollen tube to the egg. Aftersyngamy (joining of the sperm and egg cell), the zygote develops into an embryo (young sporophyte). More than one embryo is usually initiated in each gymnosperm seed. The mature seed comprises the embryo and the remains of the femalegametophyte, which serves as a food supply, and theseed coat.[37]

Gymnosperms ordinarily reproduce bysexual reproduction, and only rarely express parthenogenesis.[38] Sexual reproduction in gymnosperms appears to be required for maintaining long-termgenomic integrity.[38]Meiosis in sexual land plants provides a direct mechanism forrepairing DNA in reproductive tissues.[38] The likely primary benefit of cross-pollination in gymnosperms, as in other eukaryotes, is that it allows the avoidance of inbreeding depression caused by the presence of recessive deleterious mutations.[39]

Genetics

[edit]

The first published sequenced genome for any gymnosperm was the genome ofPicea abies in 2013.[40]

Uses

[edit]

Gymnosperms have major economic uses. Some, such as pine, fir, spruce, and cedar, are used forlumber, paper production, and resin. Some other common uses for gymnosperms aresoap,varnish,nail polish, food, gum, andperfumes.[41]

References

[edit]
  1. ^Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX (2020)."Recent advances on phylogenomics of gymnosperms and a new classification".Plant Diversity.44 (4):340–350.Bibcode:2022PlDiv..44..340Y.doi:10.1016/j.pld.2022.05.003.ISSN 2468-2659.PMC 9363647.PMID 35967253.S2CID 249117306.
  2. ^abcThe Ultimate Visual Family Dictionary. New Delhi:DK Pub. 2012. pp. 122–125.ISBN 978-0-1434-1954-9.
  3. ^Pandey, Saurabh; Moradi, Amir Bahram; Dovzhenko, Oleksandr; Touraev, Alisher; Palme, Klaus; Welsch, Ralf (2022-01-13)."Molecular Control of Sporophyte-Gametophyte Ontogeny and Transition in Plants".Frontiers in Plant Science.12.doi:10.3389/fpls.2021.789789.ISSN 1664-462X.PMC 8793881.PMID 35095963.
  4. ^Coniferae, Gnetophyta. "1 Relationships of Angiosperms to Other Seed Plants."
  5. ^Yang, Yong; Ferguson, David Kay; Liu, Bing; Mao, Kang-Shan; Gao, Lian-Ming; Zhang, Shou-Zhou; Wan, Tao; Rushforth, Keith; Zhang, Zhi-Xiang (2022-07-01)."Recent advances on phylogenomics of gymnosperms and a new classification".Plant Diversity.44 (4):340–350.Bibcode:2022PlDiv..44..340Y.doi:10.1016/j.pld.2022.05.003.ISSN 2468-2659.PMC 9363647.PMID 35967253.
  6. ^abRaven, P.H. (2013).Biology of Plants. New York: W.H. Freeman and Co.
  7. ^Walas, Łukasz; Mandryk, Wojciech; Thomas, Peter A.; Tyrała-Wierucka, Żanna; Iszkuło, Grzegorz (2018-09-01)."Sexual systems in gymnosperms: A review".Basic and Applied Ecology.31:1–9.Bibcode:2018BApEc..31....1W.doi:10.1016/j.baae.2018.05.009.ISSN 1439-1791.S2CID 90740232.
  8. ^Walas Ł, Mandryk W, Thomas PA, Tyrała-Wierucka Ż, Iszkuło G (2018)."Sexual systems in gymnosperms: A review"(PDF).Basic and Applied Ecology.31:1–9.Bibcode:2018BApEc..31....1W.doi:10.1016/j.baae.2018.05.009.S2CID 90740232.
  9. ^Gehring, Catherine A.; Theimer, Tad C.; Whitham, Thomas G.; Keim, Paul (1998)."Ectomycorrhizal Fungal Community Structure of Pinyon Pines Growing in Two Environmental Extremes".Ecology.79 (5):1562–1572.doi:10.1890/0012-9658(1998)079[1562:EFCSOP]2.0.CO;2.ISSN 1939-9170.
  10. ^Chang, Aimee Caye G.; Chen, Tao; Li, Nan; Duan, Jun (2019-08-14)."Perspectives on Endosymbiosis in Coralloid Roots: Association of Cycads and Cyanobacteria".Frontiers in Microbiology.10: 1888.doi:10.3389/fmicb.2019.01888.ISSN 1664-302X.PMC 6702271.PMID 31474965.
  11. ^ab"Gymnosperms on The Plant List". Theplantlist.org. Archived fromthe original on 2013-08-24. Retrieved2013-07-24.
  12. ^Li, Hong-Tao; Yi, Ting-Shuang; Gao, Lian-Ming; Ma, Peng-Fei; Zhang, Ting; Yang, Jun-Bo; Gitzendanner, Matthew A.; Fritsch, Peter W.; Cai, Jie; Luo, Yang; Wang, Hong (May 2019). "Origin of angiosperms and the puzzle of the Jurassic gap".Nature Plants.5 (5):461–470.Bibcode:2019NatPl...5..461L.doi:10.1038/s41477-019-0421-0.PMID 31061536.S2CID 146118264.
  13. ^Morris, Jennifer L.; Puttick, Mark N.; Clark, James W.; Edwards, Dianne; Kenrick, Paul; Pressel, Silvia; Wellman, Charles H.; Yang, Ziheng; Schneider, Harald; Donoghue, Philip C. J. (2018-03-06)."The timescale of early land plant evolution".Proceedings of the National Academy of Sciences of the United States of America.115 (10):E2274 –E2283.Bibcode:2018PNAS..115E2274M.doi:10.1073/pnas.1719588115.PMC 5877938.PMID 29463716.
  14. ^Jiao, Yuannian; Wickett, Norman J.; Ayyampalayam, Saravanaraj; Chanderbali, André S.; Landherr, Lena; Ralph, Paula E.; Tomsho, Lynn P.; Hu, Yi; Liang, Haiying;Soltis, Pamela S.;Soltis, Douglas E. (2011-04-10). "Ancestral polyploidy in seed plants and angiosperms".Nature.473 (7345):97–100.Bibcode:2011Natur.473...97J.doi:10.1038/nature09916.PMID 21478875.S2CID 4313258.
  15. ^Ollerton, J.; Coulthard, E. (2009). "Evolution of Animal Pollination".Science.326 (5954):808–809.Bibcode:2009Sci...326..808O.doi:10.1126/science.1181154.PMID 19892970.S2CID 856038.
  16. ^Ren, D; Labandeira, CC; Santiago-Blay, JA; Rasnitsyn, A; et al. (2009)."A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies".Science.326 (5954):840–847.Bibcode:2009Sci...326..840R.doi:10.1126/science.1178338.PMC 2944650.PMID 19892981.
  17. ^Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R.; Dilcher, David L.; Ren, Dong (2016)."The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies".Proceedings of the Royal Society B: Biological Sciences.283 (1824): 20152893.doi:10.1098/rspb.2015.2893.PMC 4760178.PMID 26842570.
  18. ^Bond, W. J. (March 1989). "The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence".Biological Journal of the Linnean Society.36 (3):227–249.doi:10.1111/j.1095-8312.1989.tb00492.x.
  19. ^Fisher, Jack B.; Lindström, Anders; Marler, Thomas E. (2009-06-01)."Tissue Responses and Solution Movement After Stem Wounding in Six Cycas Species".HortScience.44 (3):848–851.doi:10.21273/HORTSCI.44.3.848.ISSN 0018-5345.S2CID 83644706.
  20. ^Bell, Peter R.; Bell, Peter R.; Hemsley, Alan R. (2000).Green Plants: Their Origin and Diversity. Cambridge University Press. p. 247.ISBN 978-0-521-64673-4.
  21. ^Cleal, Christopher J.; Thomas, Barry A. (2019).Introduction to Plant Fossils. Cambridge University Press. p. 179.ISBN 978-1-108-48344-5.
  22. ^Mill, R. R. (2016-06-22)."A Monographic Revision of Retrophyllum (Podocarpaceae)".Edinburgh Journal of Botany.73 (2):171–261.doi:10.1017/S0960428616000081.ISSN 1474-0036.
  23. ^A. Farjon, ed. (2006)."Conifer database".Catalogue of Life: 2008 Annual checklist. Archived fromthe original on January 15, 2009.
  24. ^Campbell, Reece, "Phylum Coniferophyta."Biology. 7th. 2005. Print. P.595
  25. ^Gilbert, Natasha (2010-09-28)."Threats to the world's plants assessed".Nature.doi:10.1038/news.2010.499.ISSN 1476-4687.
  26. ^Leslie, Andrew B.; Beaulieu, Jeremy; Holman, Garth; Campbell, Christopher S.; Mei, Wenbin; Raubeson, Linda R.; Mathews, Sarah; et al. (2018)."An overview of extant conifer evolution from the perspective of the fossil record".American Journal of Botany.105 (9):1531–1544.doi:10.1002/ajb2.1143.PMID 30157290.S2CID 52120430.
  27. ^Leslie, Andrew B.; et al. (2018)."ajb21143-sup-0004-AppendixS4"(PDF).American Journal of Botany.105 (9):1531–1544.doi:10.1002/ajb2.1143.PMID 30157290.S2CID 52120430.
  28. ^Stull, Gregory W.; Qu, Xiao-Jian; Parins-Fukuchi, Caroline; Yang, Ying-Ying; Yang, Jun-Bo; Yang, Zhi-Yun; Hu, Yi; Ma, Hong; Soltis, Pamela S.; Soltis, Douglas E.; Li, De-Zhu; Smith, Stephen A.; Yi, Ting-Shuang; et al. (2021)."Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms".Nature Plants.7 (8):1015–1025.Bibcode:2021NatPl...7.1015S.bioRxiv 10.1101/2021.03.13.435279.doi:10.1038/s41477-021-00964-4.PMID 34282286.S2CID 232282918.
  29. ^Stull, Gregory W.; et al. (2021).main.dated.supermatrix.tree.T9.tre (Report). Figshare.doi:10.6084/m9.figshare.14547354.v1.
  30. ^Cantino 2007.
  31. ^abChristenhusz, M.J.M.; Reveal, J.L.; Farjon, A.; Gardner, M.F.; Mill, R.R.; Chase, M.W. (2011)."A new classification and linear sequence of extant gymnosperms"(PDF).Phytotaxa.19:55–70.doi:10.11646/phytotaxa.19.1.3.S2CID 86797396.
  32. ^Hilton, Jason; Bateman, Richard M. (January 2006). "Pteridosperms are the backbone of seed-plant phylogeny 1".The Journal of the Torrey Botanical Society.133 (1):119–168.doi:10.3159/1095-5674(2006)133[119:PATBOS]2.0.CO;2.S2CID 86395036.
  33. ^Christenhusz, M. J. M.; Byng, J. W. (2016)."The number of known plants species in the world and its annual increase".Phytotaxa.261 (3):201–217.doi:10.11646/phytotaxa.261.3.1.
  34. ^abSamantha, Fowler; Rebecca, Roush; James, Wise (2013). "14.3 Seed Plants: Gymnosperms".Concepts of Biology. Houston, Texas: OpenStax. Retrieved31 March 2023.
  35. ^Liu, Yang; Wang, Sibo; Li, Linzhou; Yang, Ting; Dong, Shanshan; Wei, Tong; Wu, Shengdan; Liu, Yongbo; Gong, Yiqing; Feng, Xiuyan; Ma, Jianchao; Chang, Guanxiao; Huang, Jinling; Yang, Yong; Wang, Hongli (April 2022)."The Cycas genome and the early evolution of seed plants".Nature Plants.8 (4):389–401.Bibcode:2022NatPl...8..389L.doi:10.1038/s41477-022-01129-7.ISSN 2055-0278.PMC 9023351.PMID 35437001.
  36. ^Southworth, Darlene; Cresti, Mauro (September 1997)."Comparison of flagellated and nonflagellated sperm in plants".American Journal of Botany.84 (9):1301–1311.doi:10.2307/2446056.JSTOR 2446056.PMID 21708687.
  37. ^Walters, Dirk R Walters Bonnie By (1996).Vascular plant taxonomy. Dubuque, Iowa: Kendall/Hunt Pub. Co. p. 124.ISBN 978-0-7872-2108-9.Gymnosperm seeds.
  38. ^abcHörandl E. Apomixis and the paradox of sex in plants. Ann Bot. 2024 Mar 18:mcae044. doi: 10.1093/aob/mcae044. Epub ahead of print. PMID 38497809
  39. ^Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009 Nov;10(11):783-96. doi: 10.1038/nrg2664. PMID 19834483
  40. ^Nystedt, B; Street, NR; Wetterbom, A; et al. (May 2013)."The Norway spruce genome sequence and conifer genome evolution".Nature.497 (7451):579–584.Bibcode:2013Natur.497..579N.doi:10.1038/nature12211.hdl:1854/LU-4110028.PMID 23698360.
  41. ^Biswas, C.; Johri, B.M. (1997). "Economic Importance".The Gymnosperms(PDF). Springer, Berlin, Heidelberg. pp. 440–456.doi:10.1007/978-3-662-13164-0_23.ISBN 978-3-662-13166-4.

General bibliography

[edit]
  • Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; Judd, Walter S.; Olmstead, Richard G.; Soltis, Douglas E.; Soltis, Pamela S.; Donoghue, Michael J. (August 2007). "Towards a phylogenetic nomenclature of Tracheophyta".Taxon.56 (3):822–846.doi:10.2307/25065864.JSTOR 25065864.

External links

[edit]
Wikimedia Commons has media related toGymnosperms.
Look upgymnosperm in Wiktionary, the free dictionary.
Subdisciplines
Plant groups
Plant anatomy
Plant cells
Tissues
Vegetative
Reproductive
(incl. Flower)
Surface structures
Plant physiology
Materials
Plant growth
and habit
Reproduction
Plant taxonomy
Practice
  • Lists
  • Related topics
Classification ofArchaeplastida orPlantaes.l.
Archaeplastida
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Glaucophyta
incertae sedis
Viridiplantae
orPlantaes.s.
(green algae &
land plants)
Prasinodermophyta
 Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Phragmoplastophyta
Anydrophyta
Embryophyta
(land plants)
  • (see below↓)
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
Protracheophytes*
Tracheophytes
(vascular plants)
Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
Classification ofAcrogymnospermae (livingGymnosperms)
Ginkgoidae
Ginkgoales
Ginkgoaceae
Cycadidae
Cycadales
Cycadaceae
Zamiaceae
Diooideae
Zamioideae
Pinidae
Gnetales
Ephedraceae
Gnetaceae
Welwitschiaceae
Pinales
Pinaceae
Abietoideae
Pinoideae
Araucariales
Araucariaceae
Podocarpaceae
Phyllocladoideae
Podocarpoideae
Cupressales
Sciadopityaceae
Taxaceae
Cephalotaxeae
Taxoideae
Cupressaceae
Cunninghamioideae
Taiwanioideae
Athrotaxidoideae
Sequoioideae
Taxodioideae
Callitroideae
Cupressoideae
Gymnospermae
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gymnosperm&oldid=1283437079"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp