Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Glutathione

From Wikipedia, the free encyclopedia
(Redirected fromGlutathione metabolism)
Ubiquitous antioxidant compound in living organisms

Glutathione[1]
Names
IUPAC name
γ-Glutamylcysteinylglycine
Systematic IUPAC name
(2S)-2-Amino-5-({(2R)-1-[(carboxymethyl)amino]-1-oxo-3-sulfanylpropan-2-yl}amino)-5-oxopentanoic acid
Other names
γ-L-Glutamyl-L-cysteinylglycine
(2S)-2-Amino-4-({(1R)-1-[(carboxymethyl)carbamoyl]-2-sulfanylethyl}carbamoyl)butanoic acid
Identifiers
3D model (JSmol)
AbbreviationsGSH
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.000.660Edit this at Wikidata
KEGG
MeSHGlutathione
UNII
  • InChI=1S/C10H17N3O6S/c11-5(10(18)19)1-2-7(14)13-6(4-20)9(17)12-3-8(15)16/h5-6,20H,1-4,11H2,(H,12,17)(H,13,14)(H,15,16)(H,18,19)/t5-,6-/m0/s1 checkY
    Key: RWSXRVCMGQZWBV-WDSKDSINSA-N checkY
  • C(CC(=O)N[C@@H](CS)C(=O)NCC(=O)O)[C@@H](C(=O)O)N
Properties
C10H17N3O6S
Molar mass307.32 g·mol−1
Melting point195 °C (383 °F; 468 K)[1]
Freely soluble[1]
Solubility inmethanol,diethyl etherInsoluble[1]
Pharmacology
V03AB32 (WHO)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Glutathione (GSH,/ˌɡltəˈθn/) is anorganic compound with thechemical formulaHOCOCH(NH2)CH2CH2CONHCH(CH2SH)CONHCH2COOH. It is anantioxidant inplants,animals,fungi, and somebacteria andarchaea. Glutathione is capable of preventing damage to importantcellular components caused by sources such asreactive oxygen species,free radicals,peroxides,lipid peroxides, andheavy metals.[2] It is atripeptide with agamma peptide linkage between thecarboxyl group of theglutamateside chain andcysteine. The carboxyl group of thecysteine residue is attached by normal peptide linkage toglycine.

Biosynthesis and occurrence

[edit]

Glutathione biosynthesis involves twoadenosine triphosphate-dependent steps:

While all animal cells are capable of synthesizing glutathione, synthesis in the liver has been shown to be essential.GCLCknockout mice die within a month of birth due to the absence of hepatic GSH synthesis.[4][5]

The unusual gamma amide linkage in glutathione protects it from hydrolysis by peptidases.[6]

Occurrence

[edit]

Glutathione is the most abundant non-proteinthiol (R−SH-containing compound) in animal cells, ranging from 0.5 to 10 mmol/L. It is present in thecytosol and theorganelles.[6] The concentration of glutathione in thecytoplasm is significantly higher (ranging from 0.5-10 mM) compared to extracellular fluids (2-20 μM), reaching levels up to 1000 times greater.[7][8] In healthy cells and tissue, more than 90% of the total glutathione pool is in the reduced form (GSH), with the remainder in the disulfide form (GSSG).[9] The cytosol holds 80-85% of cellular GSH and themitochondria hold 10-15%.[10]

Human beings synthesize glutathione, but a feweukaryotes do not, including some members ofFabaceae,Entamoeba, andGiardia. The only knownarchaea that make glutathione arehalobacteria. Somebacteria, such as "Cyanobacteria" andPseudomonadota, can biosynthesize glutathione.[11][12]

Systemic availability of orally consumed glutathione is poor. It had low bioavailability because the tripeptide is the substrate ofproteases (peptidases) of thealimentary canal, and due to the absence of a specificcarrier of glutathione at the level of cell membrane.[13][14] The administration of N-acetylcysteine (NAC), a cysteine prodrug, helps replenish intracellular GSH levels.[15]

Biochemical function

[edit]

Glutathione exists in reduced (GSH) and oxidized (GSSG) states.[16] The ratio of reduced glutathione to oxidized glutathione within cells is a measure of cellularoxidative stress[17][10] where increased GSSG-to-GSH ratio is indicative of greater oxidative stress.

In the reduced state, the thiol group of cysteinyl residue is a source of onereducing equivalent.Glutathione disulfide (GSSG) is thereby generated. The oxidized state is converted to the reduced state byNADPH.[18] This conversion is catalyzed byglutathione reductase:

NADPH + GSSG + H2O → 2 GSH + NADP+ + OH

Roles

[edit]

Antioxidant

[edit]

GSH protects cells by neutralising (reducing)reactive oxygen species.[19][6] This conversion is illustrated by the reduction of peroxides:

2 GSH + R2O2 → GSSG + 2 ROH (R = H, alkyl)

and with free radicals:

GSH + R1/2 GSSG + RH

Regulation

[edit]

Aside from deactivating radicals and reactive oxidants, glutathione participates in thiol protection and redox regulation of cellular thiol proteins under oxidative stress by proteinS-glutathionylation, a redox-regulated post-translational thiol modification. The general reaction involves formation of an unsymmetrical disulfide from the protectable protein (RSH) and GSH:[20]

RSH + GSH + [O] → GSSR + H2O

Glutathione is also employed for thedetoxification ofmethylglyoxal andformaldehyde, toxic metabolites produced under oxidative stress. This detoxification reaction is carried out by theglyoxalase system.Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione toS-D-lactoylglutathione.Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis ofS-D-lactoylglutathione to glutathione andD-lactic acid.

It maintains exogenous antioxidants such asvitamins C andE in their reduced (active) states.[21][22][23]

Metabolism

[edit]

Among the many metabolic processes in which it participates, glutathione is required for the biosynthesis ofleukotrienes andprostaglandins. It plays a role in the storage of cysteine. Glutathione enhances the function ofcitrulline as part of thenitric oxide cycle.[24] It is acofactor and acts onglutathione peroxidase.[25] Glutathione is used to produce S-sulfanylglutathione, which is part ofhydrogen sulfide metabolism.[26]

Conjugation

[edit]

Glutathione facilitatesmetabolism of xenobiotics.GlutathioneS-transferase enzymes catalyze its conjugation tolipophilic xenobiotics, facilitating their excretion or further metabolism.[27] The conjugation process is illustrated by the metabolism ofN-acetyl-p-benzoquinone imine (NAPQI). NAPQI is a reactivemetabolite formed by the action ofcytochrome P450 onparacetamol (acetaminophen). Glutathione conjugates to NAPQI, and the resulting ensemble is excreted. As a result of this reaction cellular glutathione concentration tends to be depleted in presence of acetaminophen.

In plants

[edit]

In plants, glutathione is involved in stress management. It is a component of theglutathione-ascorbate cycle, a system that reduces poisonoushydrogen peroxide.[28] It is the precursor ofphytochelatins, glutathioneoligomers thatchelate heavy metals such ascadmium.[29] Glutathione is required for efficient defence against plant pathogens such asPseudomonas syringae andPhytophthora brassicae.[30]Adenylyl-sulfate reductase, an enzyme of thesulfur assimilation pathway, uses glutathione as an electron donor. Other enzymes using glutathione as a substrate areglutaredoxins. These smalloxidoreductases are involved in flower development,salicylic acid, and plant defence signalling.[31]

In degradation of drug delivery systems

[edit]

Among various types ofcancer,lung cancer,larynx cancer,mouth cancer, andbreast cancer exhibit higher concentrations (10-40 mM) of GSH compared to healthy cells.[32] Thus,drug delivery systems containingdisulfide bonds, typically cross-linked micro-nanogels, stand out for their ability to degrade in the presence of high concentrations of glutathione (GSH).[33] This degradation process releases the drug payload specifically into cancerous or tumorous tissue, leveraging the significant difference in redox potential between the oxidizing extracellular environment and the reducing intracellular cytosol.[34][35]

When internalized byendocytosis, nanogels encounter high concentrations of GSH inside the cancer cell. GSH, a potent reducing agent, donates electrons to disulfide bonds in the nanogels, initiating a thiol-disulfide exchange reaction. This reaction breaks the disulfide bonds, converting them into two thiol groups, and facilitates targeted drug release where it is needed most. This reaction is called a thiol-disulfide exchange reaction.[36][37]

R−S−S−R′+ 2GSHR−SH + R′−SH +GSSG

whereR andR' are parts of the micro-nanogel structure, andGSSG is oxidized glutathione (glutathione disulfide).

The breaking of disulfide bonds causes the nanogel to degrade into smaller fragments. This degradation process leads to the release of encapsulated drugs. The released drug molecules can then exert their therapeutic effects, such as inducingapoptosis in cancer cells.[38]

Uses

[edit]

Winemaking

[edit]

The content of glutathione inmust, the first raw form of wine, determines thebrowning, or caramelizing effect, during the production ofwhite wine by trapping thecaffeoyltartaric acid quinones generated by enzymic oxidation asgrape reaction product.[39] Its concentration in wine can be determined by UPLC-MRM mass spectrometry.[40]

See also

[edit]

References

[edit]
  1. ^abcdHaynes WM, ed. (2016).CRC Handbook of Chemistry and Physics (97th ed.).CRC Press. p. 3.284.ISBN 978-1-4987-5429-3.
  2. ^Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (October 2003). "The changing faces of glutathione, a cellular protagonist".Biochemical Pharmacology.66 (8):1499–1503.doi:10.1016/S0006-2952(03)00504-5.PMID 14555227.
  3. ^White CC, Viernes H, Krejsa CM, Botta D, Kavanagh TJ (July 2003)."Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity".Analytical Biochemistry.318 (2):175–180.doi:10.1016/S0003-2697(03)00143-X.PMID 12814619.
  4. ^Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP (May 2007)."Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure".Hepatology.45 (5):1118–28.doi:10.1002/hep.21635.PMID 17464988.S2CID 25000753.
  5. ^Sies H (1999). "Glutathione and its role in cellular functions".Free Radical Biology & Medicine.27 (9–10):916–921.doi:10.1016/S0891-5849(99)00177-X.PMID 10569624.
  6. ^abcGuoyao Wu; Yun-Zhong Fang; Sheng Yang; Joanne R. Lupton; Nancy D. Turner (2004)."Glutathione Metabolism and its Implications for Health".Journal of Nutrition.134 (3):489–492.doi:10.1093/jn/134.3.489.PMID 14988435.
  7. ^Giustarini D, Milzani A, Dalle-Donne I, Rossi R (May 2023)."How to Increase Cellular Glutathione".Antioxidants.12 (5): 1094.doi:10.3390/antiox12051094.PMC 10215789.PMID 37237960.
  8. ^Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (May 2011). "Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery".J Control Release.152 (1):2–12.doi:10.1016/j.jconrel.2011.01.030.PMID 21295087.
  9. ^Halprin KM, Ohkawara A (1967)."The measurement of glutathione in human epidermis using glutathione reductase".The Journal of Investigative Dermatology.48 (2):149–152.doi:10.1038/jid.1967.24.PMID 6020678.
  10. ^abLu SC (May 2013)."Glutathione synthesis".Biochimica et Biophysica Acta (BBA) - General Subjects.1830 (5):3143–53.doi:10.1016/j.bbagen.2012.09.008.PMC 3549305.PMID 22995213.
  11. ^Copley SD, Dhillon JK (29 April 2002)."Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes".Genome Biology.3 (5): research0025.doi:10.1186/gb-2002-3-5-research0025.PMC 115227.PMID 12049666.
  12. ^Wonisch W, Schaur RJ (2001)."Chapter 2: Chemistry of Glutathione". In Grill D, Tausz T, De Kok L (eds.).Significance of glutathione in plant adaptation to the environment. Springer.ISBN 978-1-4020-0178-9 – via Google Books.
  13. ^Witschi A, Reddy S, Stofer B, Lauterburg BH (1992). "The systemic availability of oral glutathione".European Journal of Clinical Pharmacology.43 (6):667–9.doi:10.1007/bf02284971.PMID 1362956.S2CID 27606314.
  14. ^"Acetylcysteine Monograph for Professionals".Drugs.com.
  15. ^Atkuri, K. R.; Mantovani, J. J.; Herzenberg, L. A.; Herzenberg, L. A. (2007)."N-acetylcysteine — a safe antidote for cysteine/glutathione deficiency".Current Opinion in Pharmacology.7 (4):355–9.doi:10.1016/j.coph.2007.04.005.PMC 4540061.PMID 17602868.
  16. ^Iskusnykh IY, Zakharova AA, Pathak D (January 2022)."Glutathione in Brain Disorders and Aging".Molecules.27 (1): 324.doi:10.3390/molecules27010324.PMC 8746815.PMID 35011559.
  17. ^Pastore A, Piemonte F, Locatelli M, Lo Russo A, Gaeta LM, Tozzi G, Federici G (August 2001)."Determination of blood total, reduced, and oxidized glutathione in pediatric subjects".Clinical Chemistry.47 (8):1467–9.doi:10.1093/clinchem/47.8.1467.PMID 11468240.
  18. ^Couto N, Malys N, Gaskell SJ, Barber J (June 2013)."Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach"(PDF).Journal of Proteome Research.12 (6):2885–94.doi:10.1021/pr4001948.PMID 23631642.
  19. ^Michael Brownlee (2005)."The pathobiology of diabetic complications: A unifying mechanism".Diabetes.54 (6):1615–25.doi:10.2337/diabetes.54.6.1615.PMID 15919781.
  20. ^Dalle-Donne, Isabella; Rossi, Ranieri; Colombo, Graziano; Giustarini, Daniela; Milzani, Aldo (2009). "ProteinS-glutathionylation: a regulatory device from bacteria to humans".Trends in Biochemical Sciences.34 (2):85–96.doi:10.1016/j.tibs.2008.11.002.PMID 19135374.
  21. ^Dringen R (December 2000). "Metabolism and functions of glutathione in brain".Progress in Neurobiology.62 (6):649–671.doi:10.1016/s0301-0082(99)00060-x.PMID 10880854.S2CID 452394.
  22. ^Scholz RW, Graham KS, Gumpricht E, Reddy CC (1989). "Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation".Annals of the New York Academy of Sciences.570 (1):514–7.Bibcode:1989NYASA.570..514S.doi:10.1111/j.1749-6632.1989.tb14973.x.S2CID 85414084.
  23. ^Hughes RE (1964). "Reduction of dehydroascorbic acid by animal tissues".Nature.203 (4949):1068–9.Bibcode:1964Natur.203.1068H.doi:10.1038/2031068a0.PMID 14223080.S2CID 4273230.
  24. ^Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (June 1999)."Phytochelatin synthase genes from Arabidopsis and the yeastSchizosaccharomyces pombe".The Plant Cell.11 (6):1153–64.doi:10.1105/tpc.11.6.1153.JSTOR 3870806.PMC 144235.PMID 10368185.
  25. ^Grant CM (2001)."Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions".Molecular Microbiology.39 (3):533–541.doi:10.1046/j.1365-2958.2001.02283.x.PMID 11169096.S2CID 6467802.
  26. ^Melideo, SL; Jackson, MR; Jorns, MS (22 July 2014)."Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog".Biochemistry.53 (28):4739–53.doi:10.1021/bi500650h.PMC 4108183.PMID 24981631.
  27. ^Hayes, John D.; Flanagan, Jack U.; Jowsey, Ian R. (2005). "Glutathione transferases".Annual Review of Pharmacology and Toxicology.45:51–88.doi:10.1146/annurev.pharmtox.45.120403.095857.PMID 15822171.
  28. ^Noctor G, Foyer CH (June 1998). "Ascorbate and Glutathione: Keeping Active Oxygen Under Control".Annual Review of Plant Physiology and Plant Molecular Biology.49 (1):249–279.doi:10.1146/annurev.arplant.49.1.249.PMID 15012235.
  29. ^Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (June 1999)."Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe".The Plant Cell.11 (6):1153–64.doi:10.1105/tpc.11.6.1153.PMC 144235.PMID 10368185.
  30. ^Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (January 2007)."Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis"(PDF).The Plant Journal.49 (1):159–172.doi:10.1111/j.1365-313X.2006.02938.x.PMID 17144898.
  31. ^Rouhier N, Lemaire SD, Jacquot JP (2008)."The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation"(PDF).Annual Review of Plant Biology.59 (1):143–166.Bibcode:2008AnRPB..59..143R.doi:10.1146/annurev.arplant.59.032607.092811.PMID 18444899.
  32. ^Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM (December 2012)."Glutathione levels in human tumors".Biomarkers.17 (8):671–91.doi:10.3109/1354750X.2012.715672.PMC 3608468.PMID 22900535.
  33. ^Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (September 2018)."Nano based drug delivery systems: recent developments and future prospects".J Nanobiotechnology.16 (1): 71.doi:10.1186/s12951-018-0392-8.PMC 6145203.PMID 30231877.
  34. ^Li Y, Maciel D, Rodrigues J, Shi X, Tomás H (August 2015). "Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery".Chem Rev.115 (16):8564–8608.doi:10.1021/cr500131f.PMID 26259712.
  35. ^Adamo G, Grimaldi N, Campora S, Sabatino MA, Dispenza C, Ghersi G (2014)."Glutathione-Sensitive Nanogels for Drug Release".Chemical Engineering Transactions.38:457–462.
  36. ^Gilbert, H.F. (1990). "Molecular and Cellular Aspects of Thiol–Disulfide Exchange".Advances in Enzymology and Related Areas of Molecular Biology. Vol. 63. pp. 69–172.doi:10.1002/9780470123096.ch2.ISBN 978-0-470-12309-6.PMID 2407068.
  37. ^Gilbert, H.F. (1995). "Thiol/disulfide exchange equilibria and disulfide bond stability".Biothiols, Part A: Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals. Methods in Enzymology. Vol. 251. pp. 8–28.doi:10.1016/0076-6879(95)51107-5.ISBN 978-0-12-182152-4.PMID 7651233.
  38. ^Elkassih SA, Kos P, Xiong H, Siegwart DJ (January 2019)."Degradable redox-responsive disulfide-based nanogel drug carriers via dithiol oxidation polymerization".Biomater Sci.7 (2):607–617.doi:10.1039/c8bm01120f.PMC 7031860.PMID 30462102.
  39. ^Rigaud J, Cheynier V, Souquet JM, Moutounet M (1991)."Influence of must composition on phenolic oxidation kinetics".Journal of the Science of Food and Agriculture.57 (1):55–63.Bibcode:1991JSFA...57...55R.doi:10.1002/jsfa.2740570107.
  40. ^Vallverdú-Queralt A, Verbaere A, Meudec E, Cheynier V, Sommerer N (January 2015). "Straightforward method to quantify GSH, GSSG, GRP, and hydroxycinnamic acids in wines by UPLC-MRM-MS".Journal of Agricultural and Food Chemistry.63 (1):142–9.Bibcode:2015JAFC...63..142V.doi:10.1021/jf504383g.PMID 25457918.
Food antioxidants
Fuel antioxidants
Measurements
Nervous
system
Alcohol intoxication
Barbiturate
overdose
Benzodiazepine
overdose
GHB overdose
Nerve agent /
Organophosphate
poisoning
Opioid overdose
Reversal of
neuromuscular blockade
Circulatory
system
Beta blocker
Digoxin toxicity
Anticoagulants
Other
Arsenic poisoning
Cyanide poisoning
Hydrofluoric acid
Methanol /
Ethylene glycol
poisoning
Paracetamol toxicity
(Acetaminophen)
Toxic metals (cadmium
Other
Emetic
Active forms
vitamins
non-vitamins
metal ions
Base forms
Kacetyl-CoA
lysine
leucine
tryptophanalanine
G
G→pyruvate
citrate
glycine
serine
G→glutamate
α-ketoglutarate
histidine
proline
arginine
other
G→propionyl-CoA
succinyl-CoA
valine
isoleucine
methionine
threonine
propionyl-CoA
G→fumarate
phenylalaninetyrosine
G→oxaloacetate
Other
Cysteine metabolism
AMPARTooltip α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
KARTooltip Kainate receptor
NMDARTooltip N-Methyl-D-aspartate receptor
Group I
mGluR1Tooltip Metabotropic glutamate receptor 1
mGluR5Tooltip Metabotropic glutamate receptor 5
Group II
mGluR2Tooltip Metabotropic glutamate receptor 2
mGluR3Tooltip Metabotropic glutamate receptor 3
Group III
mGluR4Tooltip Metabotropic glutamate receptor 4
mGluR6Tooltip Metabotropic glutamate receptor 6
mGluR7Tooltip Metabotropic glutamate receptor 7
mGluR8Tooltip Metabotropic glutamate receptor 8
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Glutathione&oldid=1288311431"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp