Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

FluorescentD-amino acids

From Wikipedia, the free encyclopedia

FluorescentD-amino acids (FDAAs) areD-amino acid derivatives whose side-chain terminal is covalently coupled with afluorophore molecule.[1] FDAAs incorporate into the bacterialpeptidoglycan (PG) in live bacteria, resulting in strong peripheral and septal PG labeling without affecting cell growth. They are featured with theirin-situ incorporation mechanisms which enable time-course tracking of new PG formation.[2] To date, FDAAs have been employed for studying the cell wall synthesis in various bacterial species (bothgram-positives andgram-negatives) through different techniques, such asmicroscopy,mass spectrometry,flow cytometry.

Structures and general properties

[edit]
Collection of reported fluorescentD-amino acids and their structures.

FDAA consists of aD-amino acid and a fluorophore (coupled through the amino acid side chain). TheD-amino acid backbone is required for its incorporation into the bacterial peptidoglycan through the activity ofDD-transpeptidases.[3] Once being incorporated, one can use fluorescence-detection techniques to visualize the location of new PG formation as well as the growth rate.[4]

D-Alanine is the most well-studiedD-amino acid for FDAA development because it is a naturally existing residue in bacterial peptidoglycan structures. On the other hand, various fluorophores have been employed for FDAA applications and each has its features.[5] For example, coumarin-based FDAA (HADA) is small enough to penetrate the bacterial outer membranes and thus is widely used for gram-negative bacterial studies; while TAMRA-based FDAA (TADA) features its high brightness and photo/thermo-stability, which is suitable for super-resolution microscopy (strong excitation light is used).[5]

Proposed FDAA incorporation mechanisms

[edit]
Proposed mechanism of FDAA incorporation into bacterial peptidoglycan.[1]

Peptidoglycan (PG) is a mesh-like structure containing polysaccharides cross-linked by peptide chains.[6]Penicillin-binding proteins (DD-transpeptidases), in short PBPs, recognize the PG peptides and catalyze the cross-linking reactions.[7] These enzymes are reported to have high specificity toward the chirality center of the amino acid backbone (D-chiral center) but relatively low specificity toward the side-chain structure. Therefore, when FDAAs are present, they are taken by PBPs for the cross-linking reactions, resulting in their incorporation into the PG peptide chains. At proper concentration, e.g. 1-2 mM, FDAAs labeling does not affect PG synthesis and cell growth because only 1-2% of PG peptide chains are labeled with FDAA.[2]

Sequential labeling of FDAAs revealed the growth pattern of peptidoglycan inStreptomyces venezuelae.

Applications

[edit]

Published studies utilizing FDAAs as tools include:

  • Visualizing bacterial cell wall structures.[2]
  • Studying bacterial cell wall growth.[1][4]
  • Monitoring bacterial cell wall turnover.[8][9]
  • Quantifying bacterial cell wall growth activity.[10]
  • Assaying the anti-cell wall ability of antibiotics.[1]
  • Screening new anti-cell wall antibiotics.[11]
  • Tracking transpeptidase activityin vitro.[12]

References

[edit]
  1. ^abcdHsu, Yen-Pang; Booher, Garrett; Egan, Alexander; Vollmer, Waldemar; VanNieuwenhze, Michael S. (2019-09-17)."d -Amino Acid Derivatives as in Situ Probes for Visualizing Bacterial Peptidoglycan Biosynthesis".Accounts of Chemical Research.52 (9):2713–2722.doi:10.1021/acs.accounts.9b00311.ISSN 0001-4842.PMID 31419110.S2CID 206385813.
  2. ^abcKuru, Erkin; Hughes, H. Velocity; Brown, Pamela J.; Hall, Edward; Tekkam, Srinivas; Cava, Felipe; de Pedro, Miguel A.; Brun, Yves V.; VanNieuwenhze, Michael S. (2012-12-07)."In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D -Amino Acids".Angewandte Chemie International Edition.51 (50):12519–12523.doi:10.1002/anie.201206749.PMC 3589519.PMID 23055266.
  3. ^Kuru, Erkin; Radkov, Atanas; Meng, Xin; Egan, Alexander; Alvarez, Laura; Dowson, Amanda; Booher, Garrett; Breukink, Eefjan; Roper, David I.; Cava, Felipe; Vollmer, Waldemar (2019-12-20)."Mechanisms of Incorporation for D -Amino Acid Probes That Target Peptidoglycan Biosynthesis".ACS Chemical Biology.14 (12):2745–2756.doi:10.1021/acschembio.9b00664.ISSN 1554-8929.PMC 6929685.PMID 31743648.
  4. ^abRadkov, Atanas D.; Hsu, Yen-Pang; Booher, Garrett; VanNieuwenhze, Michael S. (2018-06-20)."Imaging Bacterial Cell Wall Biosynthesis".Annual Review of Biochemistry.87 (1):991–1014.doi:10.1146/annurev-biochem-062917-012921.ISSN 0066-4154.PMC 6287495.PMID 29596002.
  5. ^abHsu, Yen-Pang; Rittichier, Jonathan; Kuru, Erkin; Yablonowski, Jacob; Pasciak, Erick; Tekkam, Srinivas; Hall, Edward; Murphy, Brennan; Lee, Timothy K.; Garner, Ethan C.; Huang, Kerwyn Casey (2017)."Full color palette of fluorescent d -amino acids for in situ labeling of bacterial cell walls".Chemical Science.8 (9):6313–6321.doi:10.1039/C7SC01800B.ISSN 2041-6520.PMC 5628581.PMID 28989665.
  6. ^Vollmer, Waldemar; Blanot, Didier; De Pedro, Miguel A. (March 2008)."Peptidoglycan structure and architecture".FEMS Microbiology Reviews.32 (2):149–167.doi:10.1111/j.1574-6976.2007.00094.x.ISSN 1574-6976.PMID 18194336.
  7. ^Typas, Athanasios; Banzhaf, Manuel; Gross, Carol A.; Vollmer, Waldemar (February 2012)."From the regulation of peptidoglycan synthesis to bacterial growth and morphology".Nature Reviews Microbiology.10 (2):123–136.doi:10.1038/nrmicro2677.ISSN 1740-1526.PMC 5433867.PMID 22203377.
  8. ^Boersma, Michael J.; Kuru, Erkin; Rittichier, Jonathan T.; VanNieuwenhze, Michael S.; Brun, Yves V.; Winkler, Malcolm E. (2015-11-01). de Boer, P. (ed.)."Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms".Journal of Bacteriology.197 (21):3472–3485.doi:10.1128/JB.00541-15.ISSN 0021-9193.PMC 4621067.PMID 26303829.
  9. ^Kuru, Erkin; Lambert, Carey; Rittichier, Jonathan; Till, Rob; Ducret, Adrien; Derouaux, Adeline; Gray, Joe; Biboy, Jacob; Vollmer, Waldemar; VanNieuwenhze, Michael; Brun, Yves V. (December 2017)."Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation".Nature Microbiology.2 (12):1648–1657.doi:10.1038/s41564-017-0029-y.ISSN 2058-5276.PMC 5705579.PMID 28974693.
  10. ^Bisson-Filho, Alexandre W.; Hsu, Yen-Pang; Squyres, Georgia R.; Kuru, Erkin; Wu, Fabai; Jukes, Calum; Sun, Yingjie; Dekker, Cees; Holden, Seamus; VanNieuwenhze, Michael S.; Brun, Yves V. (2017-02-17)."Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division".Science.355 (6326):739–743.Bibcode:2017Sci...355..739B.doi:10.1126/science.aak9973.ISSN 0036-8075.PMC 5485650.PMID 28209898.
  11. ^Culp, Elizabeth J.; Waglechner, Nicholas; Wang, Wenliang; Fiebig-Comyn, Aline A.; Hsu, Yen-Pang; Koteva, Kalinka; Sychantha, David; Coombes, Brian K.; Van Nieuwenhze, Michael S.; Brun, Yves V.; Wright, Gerard D. (2020-02-27)."Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling".Nature.578 (7796):582–587.Bibcode:2020Natur.578..582C.doi:10.1038/s41586-020-1990-9.ISSN 0028-0836.PMID 32051588.S2CID 211089119.
  12. ^Hsu, Yen-Pang; Hall, Edward; Booher, Garrett; Murphy, Brennan; Radkov, Atanas D.; Yablonowski, Jacob; Mulcahey, Caitlyn; Alvarez, Laura; Cava, Felipe; Brun, Yves V.; Kuru, Erkin (April 2019)."Fluorogenic d-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays".Nature Chemistry.11 (4):335–341.Bibcode:2019NatCh..11..335H.doi:10.1038/s41557-019-0217-x.ISSN 1755-4330.PMC 6444347.PMID 30804500.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fluorescent_D-amino_acids&oldid=1246335654"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp