Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Einstein tensor

From Wikipedia, the free encyclopedia
Tensor used in general relativity
General relativity
Spacetime curvature schematic

Indifferential geometry, theEinstein tensor (named afterAlbert Einstein; also known as thetrace-reversedRicci tensor) is used to express thecurvature of apseudo-Riemannian manifold. Ingeneral relativity, it occurs in theEinstein field equations forgravitation that describespacetime curvature in a manner that is consistent with conservation of energy and momentum.

Definition

[edit]

The Einstein tensorG{\displaystyle {\boldsymbol {G}}} is atensor of order 2 defined overpseudo-Riemannian manifolds. In index-free notation it is defined asG=R12gR,{\displaystyle {\boldsymbol {G}}={\boldsymbol {R}}-{\frac {1}{2}}{\boldsymbol {g}}R,}whereR{\displaystyle {\boldsymbol {R}}} is theRicci tensor,g{\displaystyle {\boldsymbol {g}}} is themetric tensor andR{\displaystyle R} is thescalar curvature, which is computed as thetrace of the Ricci tensorRμν{\displaystyle R_{\mu \nu }} byR=gμνRμν{\displaystyle R=g^{\mu \nu }R_{\mu \nu }}. In component form, the previous equation reads asGμν=Rμν12gμνR.{\displaystyle G_{\mu \nu }=R_{\mu \nu }-{1 \over 2}g_{\mu \nu }R.}

The Einstein tensor is symmetricGμν=Gνμ{\displaystyle G_{\mu \nu }=G_{\nu \mu }}and, like theon shellstress–energy tensor, has zerodivergence:μGμν=0.{\displaystyle \nabla _{\mu }G^{\mu \nu }=0\,.}

Explicit form

[edit]

The Ricci tensor depends only on the metric tensor, so the Einstein tensor can be defined directly with just the metric tensor. However, this expression is complex and rarely quoted in textbooks. The complexity of this expression can be shown using the formula for the Ricci tensor in terms ofChristoffel symbols:Gαβ=Rαβ12gαβR=Rαβ12gαβgγζRγζ=(δαγδβζ12gαβgγζ)Rγζ=(δαγδβζ12gαβgγζ)(Γϵγζ,ϵΓϵγϵ,ζ+ΓϵϵσΓσγζΓϵζσΓσϵγ),Gαβ=(gαγgβζ12gαβgγζ)(Γϵγζ,ϵΓϵγϵ,ζ+ΓϵϵσΓσγζΓϵζσΓσϵγ),{\displaystyle {\begin{aligned}G_{\alpha \beta }&=R_{\alpha \beta }-{\frac {1}{2}}g_{\alpha \beta }R\\&=R_{\alpha \beta }-{\frac {1}{2}}g_{\alpha \beta }g^{\gamma \zeta }R_{\gamma \zeta }\\&=\left(\delta _{\alpha }^{\gamma }\delta _{\beta }^{\zeta }-{\frac {1}{2}}g_{\alpha \beta }g^{\gamma \zeta }\right)R_{\gamma \zeta }\\&=\left(\delta _{\alpha }^{\gamma }\delta _{\beta }^{\zeta }-{\frac {1}{2}}g_{\alpha \beta }g^{\gamma \zeta }\right)\left(\Gamma ^{\epsilon }{}_{\gamma \zeta ,\epsilon }-\Gamma ^{\epsilon }{}_{\gamma \epsilon ,\zeta }+\Gamma ^{\epsilon }{}_{\epsilon \sigma }\Gamma ^{\sigma }{}_{\gamma \zeta }-\Gamma ^{\epsilon }{}_{\zeta \sigma }\Gamma ^{\sigma }{}_{\epsilon \gamma }\right),\\[2pt]G^{\alpha \beta }&=\left(g^{\alpha \gamma }g^{\beta \zeta }-{\frac {1}{2}}g^{\alpha \beta }g^{\gamma \zeta }\right)\left(\Gamma ^{\epsilon }{}_{\gamma \zeta ,\epsilon }-\Gamma ^{\epsilon }{}_{\gamma \epsilon ,\zeta }+\Gamma ^{\epsilon }{}_{\epsilon \sigma }\Gamma ^{\sigma }{}_{\gamma \zeta }-\Gamma ^{\epsilon }{}_{\zeta \sigma }\Gamma ^{\sigma }{}_{\epsilon \gamma }\right),\end{aligned}}}whereδβα{\displaystyle \delta _{\beta }^{\alpha }} is theKronecker tensor and the Christoffel symbolΓαβγ{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma }} is defined asΓαβγ=12gαϵ(gβϵ,γ+gγϵ,βgβγ,ϵ).{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma }={\frac {1}{2}}g^{\alpha \epsilon }\left(g_{\beta \epsilon ,\gamma }+g_{\gamma \epsilon ,\beta }-g_{\beta \gamma ,\epsilon }\right).}and terms of the formΓβγ,μα{\displaystyle \Gamma _{\beta \gamma ,\mu }^{\alpha }} orgβγ,μ{\displaystyle g_{\beta \gamma ,\mu }} represent partial derivatives in theμ-direction, e.g.:Γαβγ,μ=μΓαβγ=xμΓαβγ{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma ,\mu }=\partial _{\mu }\Gamma ^{\alpha }{}_{\beta \gamma }={\frac {\partial }{\partial x^{\mu }}}\Gamma ^{\alpha }{}_{\beta \gamma }}

Before cancellations, this formula results in2×(6+6+9+9)=60{\displaystyle 2\times (6+6+9+9)=60} individual terms. Cancellations bring this number down somewhat.

In the special case of a locallyinertial reference frame near a point, the first derivatives of the metric tensor vanish and the component form of the Einstein tensor is considerably simplified:

Gαβ=gγμ[gγ[β,μ]α+gα[μ,β]γ12gαβgϵσ(gϵ[μ,σ]γ+gγ[σ,μ]ϵ)]=gγμ(δαϵδβσ12gϵσgαβ)(gϵ[μ,σ]γ+gγ[σ,μ]ϵ),{\displaystyle {\begin{aligned}G_{\alpha \beta }&=g^{\gamma \mu }\left[g_{\gamma [\beta ,\mu ]\alpha }+g_{\alpha [\mu ,\beta ]\gamma }-{\frac {1}{2}}g_{\alpha \beta }g^{\epsilon \sigma }\left(g_{\epsilon [\mu ,\sigma ]\gamma }+g_{\gamma [\sigma ,\mu ]\epsilon }\right)\right]\\&=g^{\gamma \mu }\left(\delta _{\alpha }^{\epsilon }\delta _{\beta }^{\sigma }-{\frac {1}{2}}g^{\epsilon \sigma }g_{\alpha \beta }\right)\left(g_{\epsilon [\mu ,\sigma ]\gamma }+g_{\gamma [\sigma ,\mu ]\epsilon }\right),\end{aligned}}}where square brackets conventionally denoteantisymmetrization over bracketed indices, i.e.gα[β,γ]ϵ=12(gαβ,γϵgαγ,βϵ).{\displaystyle g_{\alpha [\beta ,\gamma ]\epsilon }\,={\frac {1}{2}}\left(g_{\alpha \beta ,\gamma \epsilon }-g_{\alpha \gamma ,\beta \epsilon }\right).}

Trace

[edit]

Thetrace of the Einstein tensor can be computed bycontracting the equation in thedefinition with themetric tensorgμν{\displaystyle g^{\mu \nu }}. Inn{\displaystyle n} dimensions (of arbitrary signature):gμνGμν=gμνRμν12gμνgμνRG=R12(nR)=2n2R{\displaystyle {\begin{aligned}g^{\mu \nu }G_{\mu \nu }&=g^{\mu \nu }R_{\mu \nu }-{1 \over 2}g^{\mu \nu }g_{\mu \nu }R\\G&=R-{1 \over 2}(nR)={{2-n} \over 2}R\end{aligned}}}

Therefore, in the special case ofn=4{\displaystyle n=4} dimensions,G=R{\displaystyle G=-R}. That is, the trace of the Einstein tensor is the negative of theRicci tensor's trace. Thus, another name for the Einstein tensor is thetrace-reversed Ricci tensor. Thisn=4{\displaystyle n=4} case is especially relevant in thetheory of general relativity.

Use in general relativity

[edit]

The Einstein tensor allows theEinstein field equations to be written in the concise form:Gμν+Λgμν=κTμν,{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu },}whereΛ{\displaystyle \Lambda } is thecosmological constant andκ{\displaystyle \kappa } is theEinstein gravitational constant.

From theexplicit form of the Einstein tensor, the Einstein tensor is anonlinear function of the metric tensor, but is linear in the secondpartial derivatives of the metric. As a symmetric order-2 tensor, the Einstein tensor has 10 independent components in a 4-dimensional space. It follows that the Einstein field equations are a set of 10quasilinear second-order partial differential equations for the metric tensor.

Thecontracted Bianchi identities can also be easily expressed with the aid of the Einstein tensor:μGμν=0.{\displaystyle \nabla _{\mu }G^{\mu \nu }=0.}

The (contracted) Bianchi identities automatically ensure the covariant conservation of thestress–energy tensor in curved spacetimes:μTμν=0.{\displaystyle \nabla _{\mu }T^{\mu \nu }=0.}

The physical significance of the Einstein tensor is highlighted by this identity. In terms of the densitized stress tensor contracted on aKilling vectorξμ{\displaystyle \xi ^{\mu }}, an ordinary conservation law holds:μ(g Tμνξν)=0.{\displaystyle \partial _{\mu }\left({\sqrt {-g}}\ T^{\mu }{}_{\nu }\xi ^{\nu }\right)=0.}

Uniqueness

[edit]
See also:Lovelock's theorem

David Lovelock has shown that, in a four-dimensionaldifferentiable manifold, the Einstein tensor is the onlytensorial anddivergence-free function of thegμν{\displaystyle g_{\mu \nu }} and at most their first and second partial derivatives.[1][2][3][4][5]

However, theEinstein field equation is not the only equation which satisfies the three conditions:[6]

  1. Resemble but generalizeNewton–Poisson gravitational equation
  2. Apply to all coordinate systems, and
  3. Guarantee local covariant conservation of energy–momentum for any metric tensor.

Many alternative theories have been proposed, such as theEinstein–Cartan theory, that also satisfy the above conditions.

See also

[edit]

Notes

[edit]
  1. ^Lovelock, D. (1971)."The Einstein Tensor and Its Generalizations".Journal of Mathematical Physics.12 (3):498–502.Bibcode:1971JMP....12..498L.doi:10.1063/1.1665613.
  2. ^Lovelock, D. (1972)."The Four‐Dimensionality of Space and the Einstein Tensor".Journal of Mathematical Physics.13 (6):874–876.Bibcode:1972JMP....13..874L.doi:10.1063/1.1666069.
  3. ^Lovelock, D. (1969). "The uniqueness of the Einstein field equations in a four-dimensional space".Archive for Rational Mechanics and Analysis.33 (1):54–70.Bibcode:1969ArRMA..33...54L.doi:10.1007/BF00248156.S2CID 119985583.
  4. ^Farhoudi, M. (2009). "Lovelock Tensor as Generalized Einstein Tensor".General Relativity and Gravitation.41 (1):17–29.arXiv:gr-qc/9510060.Bibcode:2009GReGr..41..117F.doi:10.1007/s10714-008-0658-9.S2CID 119159537.
  5. ^Rindler, Wolfgang (2001).Relativity: Special, General, and Cosmological.Oxford University Press. p. 299.ISBN 978-0-19-850836-6.
  6. ^Schutz, Bernard (May 31, 2009).A First Course in General Relativity (2 ed.).Cambridge University Press. p. 185.ISBN 978-0-521-88705-2.

References

[edit]
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Einstein_tensor&oldid=1268780865"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp