Subalgebra of E8 containing E7
Inmathematics, theLie algebraE7½ is a subalgebra ofE8 containingE7 defined by Landsberg and Manivel in orderto fill the "hole" in a dimension formula for theexceptional series En of simple Lie algebras. This hole was observed byCvitanovic,Deligne, Cohen and de Man. E7½ has dimension 190, and is not simple: as a representation of its subalgebra E7, it splits asE7 ⊕ (56) ⊕R, where (56) is the 56-dimensionalirreducible representation of E7. This representation has an invariantsymplectic form, and this symplectic form equips(56) ⊕R with the structure of aHeisenberg algebra; this Heisenberg algebra is thenilradical in E7½.
- A.M. Cohen, R. de Man, "Computational evidence for Deligne's conjecture regarding exceptionalLie groups",Comptes rendus de l'Académie des Sciences, Série I 322 (1996) 427–432.
- P. Deligne, "La série exceptionnelle de groupes de Lie",Comptes rendus de l'Académie des Sciences, Série I 322 (1996) 321–326.
- P. Deligne, R. de Man, "La série exceptionnelle de groupes de Lie II",Comptes rendus de l'Académie des Sciences, Série I 323 (1996) 577–582.
- Landsberg, J. M.; Manivel, L. (2006), "The sextonions and E7½",Advances in Mathematics,201 (1):143–179,arXiv:math.RT/0402157,doi:10.1016/j.aim.2005.02.001,MR 2204753