Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Discontinuous Galerkin method

From Wikipedia, the free encyclopedia
Methods for solving differential equations

In applied mathematics,discontinuous Galerkin methods (DG methods) form a class ofnumerical methods for solvingdifferential equations. They combine features of thefinite element and thefinite volume framework and have been successfully applied tohyperbolic,elliptic,parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. inelectrodynamics,fluid mechanics andplasma physics. Indeed, the solutions of such problems may involve strong gradients (and even discontinuities) so that classical finite element methods fail, while finite volume methods are restricted to low order approximations.

Discontinuous Galerkin methods were first proposed and analyzed in the early 1970s as a technique to numerically solve partial differential equations. In 1973 Reed and Hill introduced a DG method to solve the hyperbolic neutron transport equation.

The origin of the DG method for elliptic problems cannot be traced back to a single publication as features such as jump penalization in the modern sense were developed gradually. However, among the early influential contributors wereBabuška,J.-L. Lions, Joachim Nitsche and Miloš Zlámal. DG methods for elliptic problems were already developed in a paper by Garth Baker in the setting of 4th order equations in 1977. A more complete account of the historical development and an introduction to DG methods for elliptic problems is given in a publication by Arnold, Brezzi, Cockburn and Marini. A number of research directions and challenges on DG methods are collected in the proceedings volume edited by Cockburn, Karniadakis and Shu.

Overview

[edit]

Much like thecontinuous Galerkin (CG) method, the discontinuous Galerkin (DG) method is afinite element method formulated relative to aweak formulation of a particular model system. Unlike traditional CG methods that areconforming, the DG method works over a trial space of functions that are onlypiecewise continuous, and thus often comprise more inclusivefunction spaces than the finite-dimensional inner product subspaces utilized in conforming methods.

As an example, consider thecontinuity equation for a scalar unknownρ{\displaystyle \rho } in a spatial domainΩ{\displaystyle \Omega } without "sources" or "sinks" :

ρt+J=0,{\displaystyle {\frac {\partial \rho }{\partial t}}+\nabla \cdot \mathbf {J} =0,}

whereJ{\displaystyle \mathbf {J} } is the flux ofρ{\displaystyle \rho }.

Now consider the finite-dimensional space of discontinuous piecewise polynomial functions over the spatial domainΩ{\displaystyle \Omega } restricted to a discretetriangulationΩh{\displaystyle \Omega _{h}}, written as

Shp(Ωh)={v|ΩeiPp(Ωei),  ΩeiΩh}{\displaystyle S_{h}^{p}(\Omega _{h})=\{v_{|\Omega _{e_{i}}}\in P^{p}(\Omega _{e_{i}}),\ \ \forall \Omega _{e_{i}}\in \Omega _{h}\}}

forPp(Ωei){\displaystyle P^{p}(\Omega _{e_{i}})} the space of polynomials with degrees less than or equal top{\displaystyle p} over elementΩei{\displaystyle \Omega _{e_{i}}} indexed byi{\displaystyle i}. Then for finite element shape functionsNjPp{\displaystyle N_{j}\in P^{p}} the solution is represented by

ρhi=j=1dofsρji(t)Nji(x),xΩei.{\displaystyle \rho _{h}^{i}=\sum _{j=1}^{\text{dofs}}\rho _{j}^{i}(t)N_{j}^{i}({\boldsymbol {x}}),\quad \forall {\boldsymbol {x}}\in \Omega _{e_{i}}.}

Then similarly choosing a test function

φhi(x)=j=1dofsφjiNji(x),xΩei,{\displaystyle \varphi _{h}^{i}({\boldsymbol {x}})=\sum _{j=1}^{\text{dofs}}\varphi _{j}^{i}N_{j}^{i}({\boldsymbol {x}}),\quad \forall {\boldsymbol {x}}\in \Omega _{e_{i}},}

multiplying the continuity equation byφhi{\displaystyle \varphi _{h}^{i}} andintegrating by parts in space, the semidiscrete DG formulation becomes:

ddtΩeiρhiφhidx+ΩeiφhiJhndx=ΩeiJhφhidx.{\displaystyle {\frac {d}{dt}}\int _{\Omega _{e_{i}}}\rho _{h}^{i}\varphi _{h}^{i}\,d{\boldsymbol {x}}+\int _{\partial \Omega _{e_{i}}}\varphi _{h}^{i}\mathbf {J} _{h}\cdot {\boldsymbol {n}}\,d{\boldsymbol {x}}=\int _{\Omega _{e_{i}}}\mathbf {J} _{h}\cdot \nabla \varphi _{h}^{i}\,d{\boldsymbol {x}}.}

Scalar hyperbolic conservation law

[edit]

A scalarhyperbolic conservation law is of the form

tu+xf(u)=0fort>0,xRu(0,x)=u0(x),{\displaystyle {\begin{aligned}\partial _{t}u+\partial _{x}f(u)&=0\quad {\text{for}}\quad t>0,\,x\in \mathbb {R} \\u(0,x)&=u_{0}(x)\,,\end{aligned}}}

where one tries to solve for the unknown scalar functionuu(t,x){\displaystyle u\equiv u(t,x)}, and the functionsf,u0{\displaystyle f,u_{0}} are typically given.

Space discretization

[edit]

Thex{\displaystyle x}-space will be discretized as

R=kIk,Ik:=(xk,xk+1)forxk<xk+1.{\displaystyle \mathbb {R} =\bigcup _{k}I_{k}\,,\quad I_{k}:=\left(x_{k},x_{k+1}\right)\quad {\text{for}}\quad x_{k}<x_{k+1}\,.}

Furthermore, we need the following definitions

hk:=|Ik|,h:=supkhk,x^k:=xk+hk2.{\displaystyle h_{k}:=|I_{k}|\,,\quad h:=\sup _{k}h_{k}\,,\quad {\hat {x}}_{k}:=x_{k}+{\frac {h_{k}}{2}}\,.}

Basis for function space

[edit]

We derive the basis representation for the function space of our solutionu{\displaystyle u}.The function space is defined as

Shp:={vL2(R):v|IkΠp}forpN0,{\displaystyle S_{h}^{p}:=\left\lbrace v\in L^{2}(\mathbb {R} ):v{\Big |}_{I_{k}}\in \Pi _{p}\right\rbrace \quad {\text{for}}\quad p\in \mathbb {N} _{0}\,,}

wherev|Ik{\displaystyle {v|}_{I_{k}}} denotes therestriction ofv{\displaystyle v} onto the intervalIk{\displaystyle I_{k}}, andΠp{\displaystyle \Pi _{p}} denotes the space of polynomials of maximaldegreep{\displaystyle p}.The indexh{\displaystyle h} should show the relation to an underlying discretization given by(xk)k{\displaystyle \left(x_{k}\right)_{k}}.Note here thatv{\displaystyle v} is not uniquely defined at the intersection points(xk)k{\displaystyle (x_{k})_{k}}.

At first we make use of a specific polynomial basis on the interval[1,1]{\displaystyle [-1,1]}, theLegendre polynomials(Pn)nN0{\displaystyle (P_{n})_{n\in \mathbb {N} _{0}}}, i.e.,

P0(x)=1,P1(x)=x,P2(x)=12(3x21),{\displaystyle P_{0}(x)=1\,,\quad P_{1}(x)=x\,,\quad P_{2}(x)={\frac {1}{2}}(3x^{2}-1)\,,\quad \dots }

Note especially the orthogonality relations

Pi,PjL2([1,1])=22i+1δiji,jN0.{\displaystyle \left\langle P_{i},P_{j}\right\rangle _{L^{2}([-1,1])}={\frac {2}{2i+1}}\delta _{ij}\quad \forall \,i,j\in \mathbb {N} _{0}\,.}

Transformation onto the interval[0,1]{\displaystyle [0,1]}, and normalization is achieved by functions(φi)i{\displaystyle (\varphi _{i})_{i}}

φi(x):=2i+1Pi(2x1)forx[0,1],{\displaystyle \varphi _{i}(x):={\sqrt {2i+1}}P_{i}(2x-1)\quad {\text{for}}\quad x\in [0,1]\,,}

which fulfill the orthonormality relation

φi,φjL2([0,1])=δiji,jN0.{\displaystyle \left\langle \varphi _{i},\varphi _{j}\right\rangle _{L^{2}([0,1])}=\delta _{ij}\quad \forall \,i,j\in \mathbb {N} _{0}\,.}

Transformation onto an intervalIk{\displaystyle I_{k}} is given by(φ¯ki)i{\displaystyle \left({\bar {\varphi }}_{ki}\right)_{i}}

φ¯ki:=1hkφi(xxkhk)forxIk,{\displaystyle {\bar {\varphi }}_{ki}:={\frac {1}{\sqrt {h_{k}}}}\varphi _{i}\left({\frac {x-x_{k}}{h_{k}}}\right)\quad {\text{for}}\quad x\in I_{k}\,,}

which fulfill

φ¯ki,φ¯kjL2(Ik)=δiji,jN0k.{\displaystyle \left\langle {\bar {\varphi }}_{ki},{\bar {\varphi }}_{kj}\right\rangle _{L^{2}(I_{k})}=\delta _{ij}\quad \forall \,i,j\in \mathbb {N} _{0}\forall \,k\,.}

ForL{\displaystyle L^{\infty }}-normalization we defineφki:=hkφ¯ki{\displaystyle \varphi _{ki}:={\sqrt {h_{k}}}{\bar {\varphi }}_{ki}}, and forL1{\displaystyle L^{1}}-normalization we defineφ~ki:=1hkφ¯ki{\displaystyle {\tilde {\varphi }}_{ki}:={\frac {1}{\sqrt {h_{k}}}}{\bar {\varphi }}_{ki}}, s.t.

φkiL(Ik)=φiL([0,1])=:ci,andφ~kiL1(Ik)=φiL1([0,1])=:ci,1.{\displaystyle \|\varphi _{ki}\|_{L^{\infty }(I_{k})}=\|\varphi _{i}\|_{L^{\infty }([0,1])}=:c_{i,\infty }\quad {\text{and}}\quad \|{\tilde {\varphi }}_{ki}\|_{L^{1}(I_{k})}=\|\varphi _{i}\|_{L^{1}([0,1])}=:c_{i,1}\,.}

Finally, we can define the basis representation of our solutionsuh{\displaystyle u_{h}}

uh(t,x):=i=0puki(t)φki(x)forx(xk,xk+1)uki(t)=uh(t,),φ~kiL2(Ik).{\displaystyle {\begin{aligned}u_{h}(t,x):=&\sum _{i=0}^{p}u_{ki}(t)\varphi _{ki}(x)\quad {\text{for}}\quad x\in (x_{k},x_{k+1})\\u_{ki}(t)=&\left\langle u_{h}(t,\cdot ),{\tilde {\varphi }}_{ki}\right\rangle _{L^{2}(I_{k})}\,.\end{aligned}}}

Note here, thatuh{\displaystyle u_{h}} is not defined at the interface positions.

Besides, prism bases are employed for planar-like structures, and are capable for 2-D/3-D hybridation.

DG-scheme

[edit]

The conservation law is transformed into its weak form by multiplying with test functions, and integration over test intervals

tu+xf(u)=0tu,vL2(Ik)+xf(u),vL2(Ik)=0forvShptu,φ~kiL2(Ik)+xf(u),φ~kiL2(Ik)=0forkip.{\displaystyle {\begin{aligned}\partial _{t}u+\partial _{x}f(u)&=0\\\Rightarrow \quad \left\langle \partial _{t}u,v\right\rangle _{L^{2}(I_{k})}+\left\langle \partial _{x}f(u),v\right\rangle _{L^{2}(I_{k})}&=0\quad {\text{for}}\quad \forall \,v\in S_{h}^{p}\\\Leftrightarrow \quad \left\langle \partial _{t}u,{\tilde {\varphi }}_{ki}\right\rangle _{L^{2}(I_{k})}+\left\langle \partial _{x}f(u),{\tilde {\varphi }}_{ki}\right\rangle _{L^{2}(I_{k})}&=0\quad {\text{for}}\quad \forall \,k\;\forall \,i\leq p\,.\end{aligned}}}

By using partial integration one is left with

ddtuki(t)+f(u(t,xk+1))φ~ki(xk+1)f(u(t,xk))φ~ki(xk)f(u(t,)),φ~kiL2(Ik)=0forkip.{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}u_{ki}(t)+f(u(t,x_{k+1})){\tilde {\varphi }}_{ki}(x_{k+1})-f(u(t,x_{k})){\tilde {\varphi }}_{ki}(x_{k})-\left\langle f(u(t,\,\cdot \,)),{\tilde {\varphi }}_{ki}'\right\rangle _{L^{2}(I_{k})}=0\quad {\text{for}}\quad \forall \,k\;\forall \,i\leq p\,.\end{aligned}}}

The fluxes at the interfaces are approximated by numerical fluxesg{\displaystyle g} with

gk:=g(uk,uk+),uk±:=u(t,xk±),{\displaystyle g_{k}:=g(u_{k}^{-},u_{k}^{+})\,,\quad u_{k}^{\pm }:=u(t,x_{k}^{\pm })\,,}

whereuk±{\displaystyle u_{k}^{\pm }} denotes the left- and right-hand sided limits.Finally, theDG-Scheme can be written as

ddtuki(t)+gk+1φ~ki(xk+1)gkφ~ki(xk)f(u(t,)),φ~kiL2(Ik)=0forkip.{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}u_{ki}(t)+g_{k+1}{\tilde {\varphi }}_{ki}(x_{k+1})-g_{k}{\tilde {\varphi }}_{ki}(x_{k})-\left\langle f(u(t,\,\cdot \,)),{\tilde {\varphi }}_{ki}'\right\rangle _{L^{2}(I_{k})}=0\quad {\text{for}}\quad \forall \,k\;\forall \,i\leq p\,.\end{aligned}}}

Scalar elliptic equation

[edit]

A scalar elliptic equation is of the form

xxu=f(x)forx(a,b)u(x)=g(x)forx=a,b{\displaystyle {\begin{aligned}-\partial _{xx}u&=f(x)\quad {\text{for}}\quad x\in (a,b)\\u(x)&=g(x)\,\quad {\text{for}}\,\quad x=a,b\end{aligned}}}

This equation is the steady-state heat equation, whereu{\displaystyle u} is the temperature. Space discretization is the same as above. We recall that the interval(a,b){\displaystyle (a,b)} is partitioned intoN+1{\displaystyle N+1} intervals of lengthh{\displaystyle h}.

We introduce jump[]{\displaystyle [{}\cdot {}]} and average{}{\displaystyle \{{}\cdot {}\}} of functions at the nodexk{\displaystyle x_{k}}:

[v]|xk=v(xk+)v(xk),{v}|xk=0.5(v(xk+)+v(xk)){\displaystyle [v]{\Big |}_{x_{k}}=v(x_{k}^{+})-v(x_{k}^{-}),\quad \{v\}{\Big |}_{x_{k}}=0.5(v(x_{k}^{+})+v(x_{k}^{-}))}

The interior penalty discontinuous Galerkin (IPDG) method is: finduh{\displaystyle u_{h}} satisfying

A(uh,vh)+A(uh,vh)=(vh)+(vh){\displaystyle A(u_{h},v_{h})+A_{\partial }(u_{h},v_{h})=\ell (v_{h})+\ell _{\partial }(v_{h})}

where the bilinear formsA{\displaystyle A} andA{\displaystyle A_{\partial }} are

A(uh,vh)=k=1N+1xk1xkxuhxvhk=1N{xuh}xk[vh]xk+εk=1N{xvh}xk[uh]xk+σhk=1N[uh]xk[vh]xk{\displaystyle A(u_{h},v_{h})=\sum _{k=1}^{N+1}\int _{x_{k-1}}^{x_{k}}\partial _{x}u_{h}\partial _{x}v_{h}-\sum _{k=1}^{N}\{\partial _{x}u_{h}\}_{x_{k}}[v_{h}]_{x_{k}}+\varepsilon \sum _{k=1}^{N}\{\partial _{x}v_{h}\}_{x_{k}}[u_{h}]_{x_{k}}+{\frac {\sigma }{h}}\sum _{k=1}^{N}[u_{h}]_{x_{k}}[v_{h}]_{x_{k}}}

and

A(uh,vh)=xuh(a)vh(a)xuh(b)vh(b)εxvh(a)uh(a)+εxvh(b)uh(b)+σh(uh(a)vh(a)+uh(b)vh(b)){\displaystyle A_{\partial }(u_{h},v_{h})=\partial _{x}u_{h}(a)v_{h}(a)-\partial _{x}u_{h}(b)v_{h}(b)-\varepsilon \partial _{x}v_{h}(a)u_{h}(a)+\varepsilon \partial _{x}v_{h}(b)u_{h}(b)+{\frac {\sigma }{h}}{\big (}u_{h}(a)v_{h}(a)+u_{h}(b)v_{h}(b){\big )}}

The linear forms{\displaystyle \ell } and{\displaystyle \ell _{\partial }} are

(vh)=abfvh{\displaystyle \ell (v_{h})=\int _{a}^{b}fv_{h}}

and

(vh)=εxvh(a)g(a)+εxvh(b)g(b)+σh(g(a)vh(a)+g(b)vh(b)){\displaystyle \ell _{\partial }(v_{h})=-\varepsilon \partial _{x}v_{h}(a)g(a)+\varepsilon \partial _{x}v_{h}(b)g(b)+{\frac {\sigma }{h}}{\big (}g(a)v_{h}(a)+g(b)v_{h}(b){\big )}}

The penalty parameterσ{\displaystyle \sigma } is a positive constant. Increasing its value will reduce the jumps in the discontinuous solution. The termε{\displaystyle \varepsilon } is chosen to be equal to1{\displaystyle -1} for the symmetric interior penalty Galerkin method; it is equal to+1{\displaystyle +1} for the non-symmetric interior penalty Galerkin method.

Direct discontinuous Galerkin method

[edit]

Thedirect discontinuous Galerkin (DDG) method is a new discontinuous Galerkin method for solving diffusion problems. In 2009, Liu and Yan first proposed the DDG method for solving diffusion equations.[1][2] The advantage of this method compared with Discontinuous Galerkin method is that the direct discontinuous Galerkin method derives the numerical format by directly taking the numerical flux of the function and the first derivative term without introducing intermediate variables. We can still get reasonable numerical results by using this method, and due to the simpler derivation process, the amount of calculation is greatly reduced.

The direct discontinuous finite element method is a branch of the Discontinuous Galerkin methods. It mainly includes transforming the problem into variational form, regional unit splitting, constructing basis functions, forming and solving discontinuous finite element equations, and convergence and error analysis.

For example, consider a nonlinear diffusion equation, which is one-dimensional:

Ut(a(U)Ux)x=0  in (0,1)×(0,T){\displaystyle U_{t}-{(a(U)\cdot U_{x})}_{x}=0\ \ in\ (0,1)\times (0,T)}, in whichU(x,0)=U0(x)  on (0,1){\displaystyle U(x,0)=U_{0}(x)\ \ on\ (0,1)}

Space discretization

[edit]

Firstly, define{Ij=(xj12, xj+12),j=1...N}{\displaystyle \left\{I_{j}=\left(x_{j-{\frac {1}{2}}},\ x_{j+{\frac {1}{2}}}\right),j=1...N\right\}}, andΔxj=xj+12xj12{\displaystyle \Delta x_{j}=x_{j+{\frac {1}{2}}}-x_{j-{\frac {1}{2}}}}. Therefore we have done the space discretization ofx{\displaystyle x}. Also, defineΔx=max1j<N Δxj{\displaystyle \Delta x=\max _{1\leq j<N}\ \Delta x_{j}}.

We want to find an approximationu{\displaystyle u} toU{\displaystyle U} such thatt[0,T]{\displaystyle \forall t\in \left[0,T\right]},uVΔx{\displaystyle u\in \mathbb {V} _{\Delta x}},

VΔx:={vL2(0,1):v|IjPk(Ij), j=1,...,N}{\displaystyle \mathbb {V} _{\Delta x}:=\left\{v\in L^{2}\left(0,1\right):{v|}_{I_{j}}\in P^{k}\left(I_{j}\right),\ j=1,...,N\right\}},Pk(Ij){\displaystyle P^{k}\left(I_{j}\right)} is the polynomials space inIj{\displaystyle I_{j}} with degree at mostk{\displaystyle k}.

Formulation of the scheme

[edit]

Flux:h:=h(U,Ux)=a(U)Ux{\displaystyle h:=h\left(U,U_{x}\right)=a\left(U\right)U_{x}}.

U{\displaystyle U}: the exact solution of the equation.

Multiply the equation with a smooth functionvH1(0,1){\displaystyle v\in H^{1}\left(0,1\right)} so that we obtain the following equations:

IjUtvdxhj+12vj+12+hj12vj12+a(U)Uxvxdx=0{\displaystyle \int _{I_{j}}U_{t}vdx-h_{j+{\frac {1}{2}}}v_{j+{\frac {1}{2}}}+h_{j-{\frac {1}{2}}}v_{j-{\frac {1}{2}}}+\int a\left(U\right)U_{x}v_{x}dx=0},

IjU(x,0)v(x)dx=IjU0(x)v(x)dx{\displaystyle \int _{I_{j}}U\left(x,0\right)v\left(x\right)dx=\int _{I_{j}}U_{0}\left(x\right)v\left(x\right)dx}

Herev{\displaystyle v} is arbitrary, the exact solutionU{\displaystyle U} of the equation is replaced by the approximate solutionu{\displaystyle u}, that is to say, the numerical solution we need is obtained by solving the differential equations.

The numerical flux

[edit]

Choosing a proper numerical flux is critical for the accuracy of DDG method.

The numerical flux needs to satisfy the following conditions:

♦ It is consistent withh=b(u)x=a(u)ux{\displaystyle h={b\left(u\right)}_{x}=a\left(u\right)u_{x}}

♦ The numerical flux is conservative in the single value onxj+12{\displaystyle x_{j+{\frac {1}{2}}}}.

♦ It has theL2{\displaystyle L^{2}}-stability;

♦ It can improve the accuracy of the method.

Thus, a general scheme for numerical flux is given:

h^=Dxb(u)=β0[b(u)]Δx+b(u)x¯+m=1k2βm(Δx)2m1[x2mb(u)]{\displaystyle {\widehat {h}}=D_{x}b(u)=\beta _{0}{\frac {\left[b\left(u\right)\right]}{\Delta x}}+{\overline {{b\left(u\right)}_{x}}}+\sum _{m=1}^{\frac {k}{2}}\beta _{m}{\left(\Delta x\right)}^{2m-1}\left[\partial _{x}^{2m}b\left(u\right)\right]}

In this flux,k{\displaystyle k} is the maximum order of polynomials in two neighboring computing units.[]{\displaystyle \left[\cdot \right]} is the jump of a function. Note that in non-uniform grids,Δx{\displaystyle \Delta x} should be(Δxj+Δxj+12){\displaystyle \left({\frac {\Delta x_{j}+\Delta x_{j+1}}{2}}\right)} and1N{\displaystyle {\frac {1}{N}}} in uniform grids.

Error estimates

[edit]

Denote that the error between the exact solutionU{\displaystyle U} and the numerical solutionu{\displaystyle u} ise=uU{\displaystyle e=u-U} .

We measure the error with the following norm:

|||v(,t)|||=(01v2dx+(1γ)0tj=1NIjvx2dxdτ+α0tj=1N[v]2/Δxdτ)0.5{\displaystyle \left|\left|\left|v(\cdot ,t)\right|\right|\right|={\left(\int _{0}^{1}v^{2}dx+\left(1-\gamma \right)\int _{0}^{t}\sum _{j=1}^{N}\int _{I_{j}}v_{x}^{2}dxd\tau +\alpha \int _{0}^{t}\sum _{j=1}^{N}{\left[v\right]}^{2}/\Delta x\cdot d\tau \right)}^{0.5}}

and we have|||U(,T)||||||U(,0)|||{\displaystyle \left|\left|\left|U(\cdot ,T)\right|\right|\right|\leq \left|\left|\left|U(\cdot ,0)\right|\right|\right|},|||u(,T)||||||U(,0)|||{\displaystyle \left|\left|\left|u(\cdot ,T)\right|\right|\right|\leq \left|\left|\left|U(\cdot ,0)\right|\right|\right|}

See also

[edit]

References

[edit]
  1. ^Hailiang Liu, Jue Yan,The Direct Discontinuous Galerkin (DDG) Methods For Diffusion Problems,SIAM J. NUMER. ANAL. Vol. 47, No. 1, pp. 675–698.
  2. ^Hailiang Liu, Jue Yan,The Direct Discontinuous Galerkin (DDG) Method for Diffusion with Interface Corrections, Commun. Comput. Phys. Vol. 8, No. 3, pp. 541-564.
Finite difference
Parabolic
Hyperbolic
Others
Finite volume
Finite element
Meshless/Meshfree
Domain decomposition
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Discontinuous_Galerkin_method&oldid=1271624133"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp