Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dirichlet's ellipsoidal problem

From Wikipedia, the free encyclopedia
Problem in hydrodynamics

In astrophysics,Dirichlet's ellipsoidal problem, named afterPeter Gustav Lejeune Dirichlet, asks under what conditions there can exist anellipsoidal configuration at all times of a homogeneous rotating fluid mass in which the motion, in aninertial frame, is a linear function of the coordinates. Dirichlet's basic idea was to reduceEuler equations to a system of ordinary differential equations such that the position of a fluid particle in a homogeneous ellipsoid at any time is a linear and homogeneous function of initial position of the fluid particle, using Lagrangian framework instead of the Eulerian framework.[1][2][3]

History

[edit]

In the winter of 1856–57, Dirichlet found some solutions of Euler equations and he presented those in his lectures on partial differential equations in July 1857 and published the results in the same month.[4] His work was left unfinished at his sudden death in 1859, but his notes were collated and published byRichard Dedekind posthumously in 1860.[5]

Bernhard Riemann said, "In his posthumous paper, edited for publication by Dedekind, Dirichlet has opened up, in a most remarkable way, an entirely new avenue for investigations on the motion of a self-gravitating homogeneous ellipsoid. The further development of his beautiful discovery has a particular interest to the mathematician even apart from its relevance to the forms of heavenly bodies which initially instigated these investigations."

Riemann–Lebovitz formulation

[edit]

Dirichlet's problem is generalized byBernhard Riemann in 1860[6] and by Norman R. Lebovitz in modern form in 1965.[7] Leta1(t), a2(t), a3(t){\displaystyle a_{1}(t),\ a_{2}(t),\ a_{3}(t)} be the semi-axes of the ellipsoid, which varies with time. Since the ellipsoid is homogeneous, the constancy of mass requires the constancy of the volume of the ellipsoid,

a1(t)a2(t)a3(t)=a1(0)a2(0)a3(0){\displaystyle a_{1}(t)a_{2}(t)a_{3}(t)=a_{1}(0)a_{2}(0)a_{3}(0)}

same as the initial volume. Consider an inertial frame(X1,X2,X3){\displaystyle (X_{1},X_{2},X_{3})} and a rotating frame(x1,x2,x3){\displaystyle (x_{1},x_{2},x_{3})}, withL(t){\displaystyle \mathbf {L} (t)} being the linear transformation such thatx=LX{\displaystyle \mathbf {x} =\mathbf {L} \mathbf {X} } and it is clear thatL{\displaystyle \mathbf {L} } is orthogonal, i.e.,LLT=LTL=I{\displaystyle \mathbf {L} \mathbf {L} ^{T}=\mathbf {L} ^{T}\mathbf {L} =\mathbf {I} }. We can define an anti-symmetric matrix with this,

Ω=dLdtLT{\displaystyle \mathbf {\Omega } ^{*}={\frac {d\mathbf {L} }{dt}}\mathbf {L} ^{T}}

where we can write the dualΩ{\displaystyle \mathbf {\Omega } } ofΩ{\displaystyle \mathbf {\Omega } ^{*}} asΩij=εijkΩk{\displaystyle \Omega _{ij}^{*}=\varepsilon _{ijk}\Omega _{k}} (and2Ωi=εijkΩjk{\displaystyle 2\Omega _{i}=\varepsilon _{ijk}\Omega _{jk}^{*}}), whereΩ(t){\displaystyle \mathbf {\Omega } (t)} is nothing but the time-dependent rotation of the rotating frame with respect to the inertial frame.

Without loss of generality, let us assume that the inertial frame and the moving frame coincide initially, i.e.,X(0)=x(0){\displaystyle \mathbf {X} (0)=\mathbf {x} (0)}. By definition, Dirichlet's problem is looking for a solution which is a linear function of initial conditionX(0)=x(0){\displaystyle \mathbf {X} (0)=\mathbf {x} (0)}. Let us assume the following form,

Xi(t)=j=13Pij(t)xj(0)aj(0).{\displaystyle X_{i}(t)=\sum _{j=1}^{3}P_{ij}(t){\frac {x_{j}(0)}{a_{j}(0)}}.}

and we define a diagonal matrixA(t){\displaystyle \mathbf {A} (t)} with diagonal elements being the semi-axes of the ellipsoid, then above equation can be written in matrix form as

X(t)=PA01x(0){\displaystyle \mathbf {X} (t)=\mathbf {P} \mathbf {A} _{0}^{-1}\mathbf {x} (0)}

whereA0=A(0){\displaystyle \mathbf {A} _{0}=\mathbf {A} (0)}. It can shown then that the matrixS=A1LP{\displaystyle \mathbf {S} =\mathbf {A} ^{-1}\mathbf {L} \mathbf {P} } transforms the vectorA01x(0){\displaystyle \mathbf {A} _{0}^{-1}\mathbf {x} (0)} linearly to the same vector at any later timeA1x{\displaystyle \mathbf {A} ^{-1}\mathbf {x} }, i.e.,A1x=SA01x(0){\displaystyle \mathbf {A} ^{-1}\mathbf {x} =\mathbf {S} \mathbf {A} _{0}^{-1}\mathbf {x} (0)}. From the definition ofA{\displaystyle \mathbf {A} }, we can realize the vectorA1x{\displaystyle \mathbf {A} ^{-1}\mathbf {x} } represents a unit normal on the surface of the ellipsoid (true only at the boundary) since a fluid element on the surface moves with the surface. Therefore, we see thatS{\displaystyle \mathbf {S} } transforms one unit vector on the boundary to another unit vector on the boundary, in other words, it is orthogonal, i.e.,SST=STS=I{\displaystyle \mathbf {S} \mathbf {S} ^{T}=\mathbf {S} ^{T}\mathbf {S} =\mathbf {I} }. In a similar manner as before, we can define another anti-symmetric matrix as

Λ=dSdtST{\displaystyle \mathbf {\Lambda } ^{*}={\frac {d\mathbf {S} }{dt}}\mathbf {S} ^{T}},

where its dual is defined asΛij=εijkΛk{\displaystyle \Lambda _{ij}^{*}=\varepsilon _{ijk}\Lambda _{k}} (and2Λi=εijkΛjk{\displaystyle 2\Lambda _{i}=\varepsilon _{ijk}\Lambda _{jk}^{*}}). The Dirichlet's ellipsoidal problem then reduces to finding whether the matrixP(t){\displaystyle \mathbf {P} (t)} exists that determines the vectorX(t){\displaystyle \mathbf {X} (t)} and that it is expressible in terms of two orthogonal matrices as inP=LTAS{\displaystyle \mathbf {P} =\mathbf {L} ^{T}\mathbf {A} \mathbf {S} } where, further

dSdt=ΛS,dLdt=ΩL,S(0)=L(0)=I.{\displaystyle {\frac {d\mathbf {S} }{dt}}=\mathbf {\Lambda } ^{*}\mathbf {S} ,\quad {\frac {d\mathbf {L} }{dt}}=\mathbf {\Omega } ^{*}\mathbf {L} ,\quad \mathbf {S} (0)=\mathbf {L} (0)=\mathbf {I} .}


Letu=dx/dt{\displaystyle \mathbf {u} =d\mathbf {x} /dt} be the velocity field seen by the observer at rest in the moving frame, which can be regarded as the internal fluid motion since this excludes the uniform rotation seen by the inertial observer. This internal motion is found to given by

u=(AΛA1+dAdtA1)x{\displaystyle \mathbf {u} =\left(\mathbf {A} \mathbf {\Lambda } ^{*}\mathbf {A} ^{-1}+{\frac {d\mathbf {A} }{dt}}\mathbf {A} ^{-1}\right)\mathbf {x} }

whose components, explicitly, are given by

u1=a1a2Λ3x2a1a3Λ2x3+1a1da1dtx1,u2=a2a3Λ1x3a2a1Λ3x1+1a2da2dtx2,u3=a3a1Λ2x1a3a2Λ1x2+1a3da3dtx3.{\displaystyle {\begin{aligned}u_{1}&={\frac {a_{1}}{a_{2}}}\Lambda _{3}x_{2}-{\frac {a_{1}}{a_{3}}}\Lambda _{2}x_{3}+{\frac {1}{a_{1}}}{\frac {da_{1}}{dt}}x_{1},\\u_{2}&={\frac {a_{2}}{a_{3}}}\Lambda _{1}x_{3}-{\frac {a_{2}}{a_{1}}}\Lambda _{3}x_{1}+{\frac {1}{a_{2}}}{\frac {da_{2}}{dt}}x_{2},\\u_{3}&={\frac {a_{3}}{a_{1}}}\Lambda _{2}x_{1}-{\frac {a_{3}}{a_{2}}}\Lambda _{1}x_{2}+{\frac {1}{a_{3}}}{\frac {da_{3}}{dt}}x_{3}.\end{aligned}}}

These three components show that the internal motion is composed of two parts: one with auniform vorticityζ{\displaystyle {\boldsymbol {\zeta }}} with components

ζk=ai2+aj2aiajΛk,(ijki).{\displaystyle \zeta _{k}=-{\frac {a_{i}^{2}+a_{j}^{2}}{a_{i}a_{j}}}\Lambda _{k},\quad (i\neq j\neq k\neq i).}

and the other with astagnation point flow, i.e.,(x1dlna1/dt,x2dlna2/dt,x3dlna3/dt){\displaystyle (x_{1}d\ln a_{1}/dt,x_{2}d\ln a_{2}/dt,x_{3}d\ln a_{3}/dt)}. Particularly, the physical meaning ofΛ{\displaystyle \mathbf {\Lambda } } can be seen to be attributed to the uniform-vorticity motion. The pressure is found to assume a quadratic form, as derived by the equation of motion (and using the vanishing condition at the surface) given by

p=pc(t)(1i=13xi2ai2){\displaystyle p=p_{c}(t)\left(1-\sum _{i=1}^{3}{\frac {x_{i}^{2}}{a_{i}^{2}}}\right)}

wherepc(t){\displaystyle p_{c}(t)} is the central pressure, so thatp=2pcA2x{\displaystyle \nabla p=-2p_{c}\mathbf {A} ^{-2}\mathbf {x} }. Substituting this back in the equation of motion leads to

d2Adt2+ddt(AΛΩA)+dAdtΛΩdAdt+AΛ2+Ω2A2ΩAΛ=2πGρBA+2pcρA1{\displaystyle {\begin{aligned}&{\frac {d^{2}\mathbf {A} }{dt^{2}}}+{\frac {d}{dt}}(\mathbf {A} \mathbf {\Lambda } ^{*}-\mathbf {\Omega } ^{*}\mathbf {A} )+{\frac {d\mathbf {A} }{dt}}\mathbf {\Lambda } ^{*}-\mathbf {\Omega } ^{*}{\frac {d\mathbf {A} }{dt}}+\mathbf {A} \mathbf {\Lambda } ^{*2}+\mathbf {\Omega } ^{*2}\mathbf {A} -2\mathbf {\Omega } ^{*}\mathbf {A} \mathbf {\Lambda } ^{*}\\[8pt]={}&{-2}\pi G\rho \mathbf {B} \mathbf {A} +{\frac {2p_{c}}{\rho }}\mathbf {A} ^{-1}\end{aligned}}}

whereG{\displaystyle G} is thegravitational constant andB{\displaystyle \mathbf {B} } is diagonal matrix, whose diagonal elements are given by

Bi=a1a2a30du(ai2+u)Δ,Δ2=(a12+u)(a22+u)(a32+u).{\displaystyle B_{i}=a_{1}a_{2}a_{3}\int _{0}^{\infty }{\frac {du}{(a_{i}^{2}+u)\Delta }},\quad \Delta ^{2}=(a_{1}^{2}+u)(a_{2}^{2}+u)(a_{3}^{2}+u).}

The tensor momentum equation and the conservation of mass equation, i.e.,a1a2a3=a1(0)a2(0)a3(0){\displaystyle a_{1}a_{2}a_{3}=a_{1}(0)a_{2}(0)a_{3}(0)} provides us with ten equations for the ten unknowns,a1, a2, a3, pc, Λ, Ω.{\displaystyle a_{1},\ a_{2},\ a_{3},\ p_{c},\ \mathbf {\Lambda } ,\ \mathbf {\Omega } .}

Dedekind's theorem

[edit]

It states thatif a motion determined byX(t)=P(t)A01x(0){\displaystyle \mathbf {X} (t)=\mathbf {P} (t)\mathbf {A} _{0}^{-1}\mathbf {x} (0)} is admissible under the conditions of Dirichlet's problem, then the motion determined by the transposePT{\displaystyle \mathbf {P} ^{T}} ofP{\displaystyle \mathbf {P} } is also admissible. In other words, the theorem can be stated asfor any state of motions that preserves a ellipsoidal figure, there is an adjoint state of motions that preserves the same ellipsoidal figure.

By taking transpose of the tensor momentum equation, one sees that the role ofΛ{\displaystyle \mathbf {\Lambda } ^{*}} andΩ{\displaystyle \mathbf {\Omega } ^{*}} are interchanged. If there is solution forA, Λ, Ω{\displaystyle \mathbf {A} ,\ \mathbf {\Lambda } ^{*},\ \mathbf {\Omega } ^{*}}, then for the sameA{\displaystyle \mathbf {A} }, there exists another solution with the role ofΛ{\displaystyle \mathbf {\Lambda } ^{*}} andΩ{\displaystyle \mathbf {\Omega } ^{*}} interchanged. But interchangingΛ{\displaystyle \mathbf {\Lambda } ^{*}} andΩ{\displaystyle \mathbf {\Omega } ^{*}} is equivalent to replacingP{\displaystyle \mathbf {P} } byPT{\displaystyle \mathbf {P} ^{T}}. The following relations confirms the previous statement.

P=LTAS{\displaystyle \mathbf {P} =\mathbf {L} ^{T}\mathbf {A} \mathbf {S} }

where, further

dSdt=ΛS,dLdt=ΩL,andS(0)=L(0)=I.{\displaystyle {\frac {d\mathbf {S} }{dt}}=\mathbf {\Lambda } ^{*}\mathbf {S} ,\quad {\frac {d\mathbf {L} }{dt}}=\mathbf {\Omega } ^{*}\mathbf {L} ,\quad {\text{and}}\quad \mathbf {S} (0)=\mathbf {L} (0)=\mathbf {I} .}

The typical configuration of this theorem is theJacobi ellipsoid and its adjoint is called as Dedekind ellipsoid, in other words, both ellipsoid have same shape, but their internal fluid motions are different.

Integrals

[edit]

The tensor momentum equation admits three integrals, with regards to conservation of energy, angular momentum and circulation. The energy integral is found to be[1]

12i=13(daidt)2+12ijk(Λi2+Ωi2)(aj2+ak2)2ijkaiajΛkΩk2πGρI=constant{\displaystyle {\frac {1}{2}}\sum _{i=1}^{3}\left({\frac {da_{i}}{dt}}\right)^{2}+{\frac {1}{2}}\sum _{i\neq j\neq k}(\Lambda _{i}^{2}+\Omega _{i}^{2})(a_{j}^{2}+a_{k}^{2})-2\sum _{i\neq j\neq k}a_{i}a_{j}\Lambda _{k}\Omega _{k}-2\pi G\rho I={\text{constant}}}

where

I=a1a2a30duΔ.{\displaystyle I=a_{1}a_{2}a_{3}\int _{0}^{\infty }{\frac {du}{\Delta }}.}

Next, we have the integral

ijk[(ai2+aj2)Ωk2aiajΛk]2=constant{\displaystyle \sum _{i\neq j\neq k}[(a_{i}^{2}+a_{j}^{2})\Omega _{k}-2a_{i}a_{j}\Lambda _{k}]^{2}={\text{constant}}}

which signifies the conservation ofL2{\displaystyle \mathbf {L} ^{2}}, where the angular momentum components are given by

Li=M5[(aj2+ak2)Ωi2ajakΛi],ijk{\displaystyle L_{i}={\frac {M}{5}}[(a_{j}^{2}+a_{k}^{2})\Omega _{i}-2a_{j}a_{k}\Lambda _{i}],\quad i\neq j\neq k}

whereinM{\displaystyle M} is the total mass. Since the problem is invariant to the interchange ofΛ{\displaystyle \mathbf {\Lambda } ^{*}} andΩ{\displaystyle \mathbf {\Omega } ^{*}}, from the above integral, we obtain

ijk[(ai2+aj2)Λk2aiajΩk]2=ijkai2aj2(2Ωk+ζk)2=constant{\displaystyle \sum _{i\neq j\neq k}[(a_{i}^{2}+a_{j}^{2})\Lambda _{k}-2a_{i}a_{j}\Omega _{k}]^{2}=\sum _{i\neq j\neq k}a_{i}^{2}a_{j}^{2}(2\Omega _{k}+\zeta _{k})^{2}={\text{constant}}}

where we substituted the formula forΛ{\displaystyle \mathbf {\Lambda } } in terms of the vorticity vectorζ{\displaystyle {\boldsymbol {\zeta }}}. This integral signifies the conservation ofΓ2{\displaystyle \mathbf {\Gamma } ^{2}}, where the circulation components (in the inertial frame) are given by

Γk=πaiaj(2Ωk+ζk),ijk.{\displaystyle \Gamma _{k}=\pi a_{i}a_{j}(2\Omega _{k}+\zeta _{k}),\quad i\neq j\neq k.}

See also

[edit]

References

[edit]
  1. ^abChandrasekhar, S. (1969).Ellipsoidal figures of equilibrium (Vol. 10, p. 253). New Haven: Yale University Press.
  2. ^Chandrasekhar, S. (1967). Ellipsoidal figures of equilibrium—an historical account. Communications on Pure and Applied Mathematics, 20(2), 251–265.
  3. ^Lebovitz, N. R. (1998). The mathematical development of the classical ellipsoids.International journal of engineering science, 36(12), 1407–1420.
  4. ^Dirichlet G. Lejeune,Nach. von der König. Gesell. der Wiss. zu Gött. 14 (1857) 205
  5. ^Dirichlet, P. G. L. (1860).Untersuchungen über ein Problem der Hydrodynamik (Vol. 8). Dieterichschen Buchhandlung.
  6. ^Riemann, B. (1860).Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Verlag der Dieterichschen Buchhandlung.
  7. ^Norman R. Lebovitz (1965), The Riemann ellipsoids (lecture notes, Inst. Ap., Cointe-Sclessin, Belgium)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dirichlet%27s_ellipsoidal_problem&oldid=1275629336"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp