Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Differentiation of trigonometric functions

From Wikipedia, the free encyclopedia
This articledoes notcite anysources. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged andremoved.
Find sources: "Differentiation of trigonometric functions" – news ·newspapers ·books ·scholar ·JSTOR
(February 2025) (Learn how and when to remove this message)
Mathematical process of finding the derivative of a trigonometric function
Trigonometry
Reference
Laws and theorems
Calculus
Mathematicians
FunctionDerivative
sin(x){\displaystyle \sin(x)}cos(x){\displaystyle \cos(x)}
cos(x){\displaystyle \cos(x)}sin(x){\displaystyle -\sin(x)}
tan(x){\displaystyle \tan(x)}sec2(x){\displaystyle \sec ^{2}(x)}
cot(x){\displaystyle \cot(x)}csc2(x){\displaystyle -\csc ^{2}(x)}
sec(x){\displaystyle \sec(x)}sec(x)tan(x){\displaystyle \sec(x)\tan(x)}
csc(x){\displaystyle \csc(x)}csc(x)cot(x){\displaystyle -\csc(x)\cot(x)}
arcsin(x){\displaystyle \arcsin(x)}11x2{\displaystyle {\frac {1}{\sqrt {1-x^{2}}}}}
arccos(x){\displaystyle \arccos(x)}11x2{\displaystyle -{\frac {1}{\sqrt {1-x^{2}}}}}
arctan(x){\displaystyle \arctan(x)}1x2+1{\displaystyle {\frac {1}{x^{2}+1}}}
arccot(x){\displaystyle \operatorname {arccot}(x)}1x2+1{\displaystyle -{\frac {1}{x^{2}+1}}}
arcsec(x){\displaystyle \operatorname {arcsec}(x)}1|x|x21{\displaystyle {\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
arccsc(x){\displaystyle \operatorname {arccsc}(x)}1|x|x21{\displaystyle -{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}

Thedifferentiation of trigonometric functions is the mathematical process of finding thederivative of atrigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin(a) = cos(a), meaning that the rate of change of sin(x) at a particular anglex = a is given by the cosine of that angle.

All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of thequotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of theinverse trigonometric functions are found usingimplicit differentiation.

Proofs of derivatives of trigonometric functions

[edit]

Limit of sin(θ)/θ as θ tends to 0

[edit]
Circle, centreO, radius 1

The diagram at right shows a circle with centreO and radiusr = 1. Let two radiiOA andOB make an arc of θ radians. Since we are considering the limit asθ tends to zero, we may assumeθ is a small positive number, say 0 < θ <1/2 π in the first quadrant.

In the diagram, letR1 be the triangleOAB,R2 thecircular sectorOAB, andR3 the triangleOAC.

Thearea of triangleOAB is:

Area(R1)=12 |OA| |OB|sinθ=12sinθ.{\displaystyle \mathrm {Area} (R_{1})={\tfrac {1}{2}}\ |OA|\ |OB|\sin \theta ={\tfrac {1}{2}}\sin \theta \,.}

Thearea of the circular sectorOAB is:

Area(R2)=12θ.{\displaystyle \mathrm {Area} (R_{2})={\tfrac {1}{2}}\theta \,.}

The area of the triangleOAC is given by:

Area(R3)=12 |OA| |AC|=12tanθ.{\displaystyle \mathrm {Area} (R_{3})={\tfrac {1}{2}}\ |OA|\ |AC|={\tfrac {1}{2}}\tan \theta \,.}

Since each region is contained in the next, one has:

Area(R1)<Area(R2)<Area(R3)12sinθ<12θ<12tanθ.{\displaystyle {\text{Area}}(R_{1})<{\text{Area}}(R_{2})<{\text{Area}}(R_{3})\implies {\tfrac {1}{2}}\sin \theta <{\tfrac {1}{2}}\theta <{\tfrac {1}{2}}\tan \theta \,.}

Moreover, sincesinθ > 0 in the first quadrant, we may divide through by1/2sinθ, giving:

1<θsinθ<1cosθ1>sinθθ>cosθ.{\displaystyle 1<{\frac {\theta }{\sin \theta }}<{\frac {1}{\cos \theta }}\implies 1>{\frac {\sin \theta }{\theta }}>\cos \theta \,.}

In the last step we took the reciprocals of the three positive terms, reversing the inequities.

Squeeze: The curvesy = 1 andy = cosθ shown in red, the curvey = sin(θ)/θ shown in blue.

We conclude that for 0 < θ <1/2 π, the quantitysin(θ)/θ isalways less than 1 andalways greater than cos(θ). Thus, asθ gets closer to 0,sin(θ)/θ is "squeezed" between a ceiling at height 1 and a floor at heightcosθ, which rises towards 1; hence sin(θ)/θ must tend to 1 asθ tends to 0 from the positive side:

limθ0+sinθθ=1.{\displaystyle \lim _{\theta \to 0^{+}}{\frac {\sin \theta }{\theta }}=1\,.}

For the case whereθ is a small negative number –1/2 π < θ < 0, we use the fact that sine is anodd function:

limθ0sinθθ = limθ0+sin(θ)θ = limθ0+sinθθ = limθ0+sinθθ = 1.{\displaystyle \lim _{\theta \to 0^{-}}\!{\frac {\sin \theta }{\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin(-\theta )}{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {-\sin \theta }{-\theta }}\ =\ \lim _{\theta \to 0^{+}}\!{\frac {\sin \theta }{\theta }}\ =\ 1\,.}

Limit of (cos(θ)-1)/θ as θ tends to 0

[edit]

The last section enables us to calculate this new limit relatively easily. This is done by employing a simple trick. In this calculation, the sign ofθ is unimportant.

limθ0cosθ1θ = limθ0(cosθ1θ)(cosθ+1cosθ+1) = limθ0cos2θ1θ(cosθ+1).{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\left({\frac {\cos \theta -1}{\theta }}\right)\!\!\left({\frac {\cos \theta +1}{\cos \theta +1}}\right)\ =\ \lim _{\theta \to 0}\,{\frac {\cos ^{2}\!\theta -1}{\theta \,(\cos \theta +1)}}.}

Usingcos2θ – 1 = –sin2θ,the fact that the limit of a product is the product of limits, and the limit result from the previous section, we find that:

limθ0cosθ1θ = limθ0sin2θθ(cosθ+1) = (limθ0sinθθ)(limθ0sinθcosθ+1) = (1)(02)=0.{\displaystyle \lim _{\theta \to 0}\,{\frac {\cos \theta -1}{\theta }}\ =\ \lim _{\theta \to 0}\,{\frac {-\sin ^{2}\theta }{\theta (\cos \theta +1)}}\ =\ \left(-\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}\,{\frac {\sin \theta }{\cos \theta +1}}\right)\ =\ (-1)\left({\frac {0}{2}}\right)=0\,.}

Limit of tan(θ)/θ as θ tends to 0

[edit]

Using the limit for thesine function, the fact that the tangent function is odd, and the fact that the limit of a product is the product of limits, we find:

limθ0tanθθ = (limθ0sinθθ)(limθ01cosθ) = (1)(1) = 1.{\displaystyle \lim _{\theta \to 0}{\frac {\tan \theta }{\theta }}\ =\ \left(\lim _{\theta \to 0}{\frac {\sin \theta }{\theta }}\right)\!\left(\lim _{\theta \to 0}{\frac {1}{\cos \theta }}\right)\ =\ (1)(1)\ =\ 1\,.}

Derivative of the sine function

[edit]

We calculate the derivative of thesine function from thelimit definition:

ddθsinθ=limδ0sin(θ+δ)sinθδ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin(\theta +\delta )-\sin \theta }{\delta }}.}

Using theangle addition formulasin(α+β) = sin α cos β + sin β cos α, we have:

ddθsinθ=limδ0sinθcosδ+sinδcosθsinθδ=limδ0(sinδδcosθ+cosδ1δsinθ).{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =\lim _{\delta \to 0}{\frac {\sin \theta \cos \delta +\sin \delta \cos \theta -\sin \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\sin \delta }{\delta }}\cos \theta +{\frac {\cos \delta -1}{\delta }}\sin \theta \right).}

Using the limits for thesine andcosine functions:

ddθsinθ=(1)cosθ+(0)sinθ=cosθ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\sin \theta =(1)\cos \theta +(0)\sin \theta =\cos \theta \,.}

Derivative of the cosine function

[edit]

From the definition of derivative

[edit]

We again calculate the derivative of thecosine function from the limit definition:

ddθcosθ=limδ0cos(θ+δ)cosθδ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =\lim _{\delta \to 0}{\frac {\cos(\theta +\delta )-\cos \theta }{\delta }}.}

Using the angle addition formulacos(α+β) = cos α cos β – sin α sin β, we have:

ddθcosθ=limδ0cosθcosδsinθsinδcosθδ=limδ0(cosδ1δcosθsinδδsinθ).{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =\lim _{\delta \to 0}{\frac {\cos \theta \cos \delta -\sin \theta \sin \delta -\cos \theta }{\delta }}=\lim _{\delta \to 0}\left({\frac {\cos \delta -1}{\delta }}\cos \theta \,-\,{\frac {\sin \delta }{\delta }}\sin \theta \right).}

Using the limits for thesine andcosine functions:

ddθcosθ=(0)cosθ(1)sinθ=sinθ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\cos \theta =(0)\cos \theta -(1)\sin \theta =-\sin \theta \,.}

From the chain rule

[edit]

To compute the derivative of the cosine function from the chain rule, first observe the following three facts:

cosθ=sin(π2θ){\displaystyle \cos \theta =\sin \left({\tfrac {\pi }{2}}-\theta \right)}
sinθ=cos(π2θ){\displaystyle \sin \theta =\cos \left({\tfrac {\pi }{2}}-\theta \right)}
ddθsinθ=cosθ{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \theta =\cos \theta }

The first and the second aretrigonometric identities, and the third is proven above. Using these three facts, we can write the following,

ddθcosθ=ddθsin(π2θ){\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta ={\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\sin \left({\tfrac {\pi }{2}}-\theta \right)}

We can differentiate this using thechain rule. Lettingf(x)=sinx,  g(θ)=π2θ{\displaystyle f(x)=\sin x,\ \ g(\theta )={\tfrac {\pi }{2}}-\theta }, we have:

ddθf(g(θ))=f(g(θ))g(θ)=cos(π2θ)(01)=sinθ{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}f\!\left(g\!\left(\theta \right)\right)=f^{\prime }\!\left(g\!\left(\theta \right)\right)\cdot g^{\prime }\!\left(\theta \right)=\cos \left({\tfrac {\pi }{2}}-\theta \right)\cdot (0-1)=-\sin \theta }.

Therefore, we have proven that

ddθcosθ=sinθ{\displaystyle {\tfrac {\operatorname {d} }{\operatorname {d} \!\theta }}\cos \theta =-\sin \theta }.

Derivative of the tangent function

[edit]

From the definition of derivative

[edit]

To calculate the derivative of thetangent function tanθ, we usefirst principles. By definition:

ddθtanθ=limδ0(tan(θ+δ)tanθδ).{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left({\frac {\tan(\theta +\delta )-\tan \theta }{\delta }}\right).}

Using the well-known angle formulatan(α+β) = (tan α + tan β) / (1 - tan α tan β), we have:

ddθtanθ=limδ0[tanθ+tanδ1tanθtanδtanθδ]=limδ0[tanθ+tanδtanθ+tan2θtanδδ(1tanθtanδ)].{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}\left[{\frac {{\frac {\tan \theta +\tan \delta }{1-\tan \theta \tan \delta }}-\tan \theta }{\delta }}\right]=\lim _{\delta \to 0}\left[{\frac {\tan \theta +\tan \delta -\tan \theta +\tan ^{2}\theta \tan \delta }{\delta \left(1-\tan \theta \tan \delta \right)}}\right].}

Using the fact that the limit of a product is the product of the limits:

ddθtanθ=limδ0tanδδ×limδ0(1+tan2θ1tanθtanδ).{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =\lim _{\delta \to 0}{\frac {\tan \delta }{\delta }}\times \lim _{\delta \to 0}\left({\frac {1+\tan ^{2}\theta }{1-\tan \theta \tan \delta }}\right).}

Using the limit for thetangent function, and the fact that tanδ tends to 0 as δ tends to 0:

ddθtanθ=1×1+tan2θ10=1+tan2θ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1\times {\frac {1+\tan ^{2}\theta }{1-0}}=1+\tan ^{2}\theta .}

We see immediately that:

ddθtanθ=1+sin2θcos2θ=cos2θ+sin2θcos2θ=1cos2θ=sec2θ.{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\,\tan \theta =1+{\frac {\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}={\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta \,.}

From the quotient rule

[edit]

One can also compute the derivative of the tangent function using thequotient rule.

ddθtanθ=ddθsinθcosθ=(sinθ)cosθsinθ(cosθ)cos2θ=cos2θ+sin2θcos2θ{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta ={\frac {\operatorname {d} }{\operatorname {d} \!\theta }}{\frac {\sin \theta }{\cos \theta }}={\frac {\left(\sin \theta \right)^{\prime }\cdot \cos \theta -\sin \theta \cdot \left(\cos \theta \right)^{\prime }}{\cos ^{2}\theta }}={\frac {\cos ^{2}\theta +\sin ^{2}\theta }{\cos ^{2}\theta }}}

The numerator can be simplified to 1 by thePythagorean identity, giving us,

1cos2θ=sec2θ{\displaystyle {\frac {1}{\cos ^{2}\theta }}=\sec ^{2}\theta }

Therefore,

ddθtanθ=sec2θ{\displaystyle {\frac {\operatorname {d} }{\operatorname {d} \!\theta }}\tan \theta =\sec ^{2}\theta }

Proofs of derivatives of inverse trigonometric functions

[edit]

The following derivatives are found by setting avariabley equal to theinverse trigonometric function that we wish to take the derivative of. Usingimplicit differentiation and then solving fordy/dx, the derivative of the inverse function is found in terms ofy. To convertdy/dx back into being in terms ofx, we can draw a reference triangle on the unit circle, lettingθ be y. Using thePythagorean theorem and the definition of the regular trigonometric functions, we can finally expressdy/dx in terms ofx.

Differentiating the inverse sine function

[edit]

We let

y=arcsinx{\displaystyle y=\arcsin x\,\!}

Where

π2yπ2{\displaystyle -{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}}}

Then

siny=x{\displaystyle \sin y=x\,\!}

Taking the derivative with respect tox{\displaystyle x} on both sides and solving for dy/dx:

ddxsiny=ddxx{\displaystyle {d \over dx}\sin y={d \over dx}x}
cosydydx=1{\displaystyle \cos y\cdot {dy \over dx}=1\,\!}

Substitutingcosy=1sin2y{\displaystyle \cos y={\sqrt {1-\sin ^{2}y}}} in from above,

1sin2ydydx=1{\displaystyle {\sqrt {1-\sin ^{2}y}}\cdot {dy \over dx}=1}

Substitutingx=siny{\displaystyle x=\sin y} in from above,

1x2dydx=1{\displaystyle {\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
dydx=11x2{\displaystyle {dy \over dx}={\frac {1}{\sqrt {1-x^{2}}}}}

Differentiating the inverse cosine function

[edit]

We let

y=arccosx{\displaystyle y=\arccos x\,\!}

Where

0yπ{\displaystyle 0\leq y\leq \pi }

Then

cosy=x{\displaystyle \cos y=x\,\!}

Taking the derivative with respect tox{\displaystyle x} on both sides and solving for dy/dx:

ddxcosy=ddxx{\displaystyle {d \over dx}\cos y={d \over dx}x}
sinydydx=1{\displaystyle -\sin y\cdot {dy \over dx}=1}

Substitutingsiny=1cos2y{\displaystyle \sin y={\sqrt {1-\cos ^{2}y}}\,\!} in from above, we get

1cos2ydydx=1{\displaystyle -{\sqrt {1-\cos ^{2}y}}\cdot {dy \over dx}=1}

Substitutingx=cosy{\displaystyle x=\cos y\,\!} in from above, we get

1x2dydx=1{\displaystyle -{\sqrt {1-x^{2}}}\cdot {dy \over dx}=1}
dydx=11x2{\displaystyle {dy \over dx}=-{\frac {1}{\sqrt {1-x^{2}}}}}

Alternatively, once the derivative ofarcsinx{\displaystyle \arcsin x} is established, the derivative ofarccosx{\displaystyle \arccos x} follows immediately by differentiating the identityarcsinx+arccosx=π/2{\displaystyle \arcsin x+\arccos x=\pi /2} so that(arccosx)=(arcsinx){\displaystyle (\arccos x)'=-(\arcsin x)'}.

Differentiating the inverse tangent function

[edit]

We let

y=arctanx{\displaystyle y=\arctan x\,\!}

Where

π2<y<π2{\displaystyle -{\frac {\pi }{2}}<y<{\frac {\pi }{2}}}

Then

tany=x{\displaystyle \tan y=x\,\!}

Taking the derivative with respect tox{\displaystyle x} on both sides and solving for dy/dx:

ddxtany=ddxx{\displaystyle {d \over dx}\tan y={d \over dx}x}

Left side:

ddxtany=sec2ydydx=(1+tan2y)dydx{\displaystyle {d \over dx}\tan y=\sec ^{2}y\cdot {dy \over dx}=(1+\tan ^{2}y){dy \over dx}} using the Pythagorean identity

Right side:

ddxx=1{\displaystyle {d \over dx}x=1}

Therefore,

(1+tan2y)dydx=1{\displaystyle (1+\tan ^{2}y){dy \over dx}=1}

Substitutingx=tany{\displaystyle x=\tan y\,\!} in from above, we get

(1+x2)dydx=1{\displaystyle (1+x^{2}){dy \over dx}=1}
dydx=11+x2{\displaystyle {dy \over dx}={\frac {1}{1+x^{2}}}}

Differentiating the inverse cotangent function

[edit]

We let

y=arccotx{\displaystyle y=\operatorname {arccot} x}

where0<y<π{\displaystyle 0<y<\pi }. Then

coty=x{\displaystyle \cot y=x}

Taking the derivative with respect tox{\displaystyle x} on both sides and solving for dy/dx:

ddxcoty=ddxx{\displaystyle {\frac {d}{dx}}\cot y={\frac {d}{dx}}x}

Left side:

ddxcoty=csc2ydydx=(1+cot2y)dydx{\displaystyle {d \over dx}\cot y=-\csc ^{2}y\cdot {dy \over dx}=-(1+\cot ^{2}y){dy \over dx}} using the Pythagorean identity

Right side:

ddxx=1{\displaystyle {d \over dx}x=1}

Therefore,

(1+cot2y)dydx=1{\displaystyle -(1+\cot ^{2}y){\frac {dy}{dx}}=1}

Substitutingx=coty{\displaystyle x=\cot y},

(1+x2)dydx=1{\displaystyle -(1+x^{2}){\frac {dy}{dx}}=1}
dydx=11+x2{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{1+x^{2}}}}

Alternatively, as the derivative ofarctanx{\displaystyle \arctan x} is derived as shown above, then using the identityarctanx+arccotx=π2{\displaystyle \arctan x+\operatorname {arccot} x={\dfrac {\pi }{2}}} follows immediately thatddxarccotx=ddx(π2arctanx)=11+x2{\displaystyle {\begin{aligned}{\dfrac {d}{dx}}\operatorname {arccot} x&={\dfrac {d}{dx}}\left({\dfrac {\pi }{2}}-\arctan x\right)\\&=-{\dfrac {1}{1+x^{2}}}\end{aligned}}}

Differentiating the inverse secant function

[edit]

Using implicit differentiation

[edit]

Let

y=arcsecx |x|1{\displaystyle y=\operatorname {arcsec} x\ \mid |x|\geq 1}

Then

x=secy y[0,π2)(π2,π]{\displaystyle x=\sec y\mid \ y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}
dxdy=secytany=|x|x21{\displaystyle {\frac {dx}{dy}}=\sec y\tan y=|x|{\sqrt {x^{2}-1}}}

(The absolute value in the expression is necessary as the product of secant and tangent in the interval of y is always nonnegative, while the radicalx21{\displaystyle {\sqrt {x^{2}-1}}} is always nonnegative by definition of the principal square root, so the remaining factor must also be nonnegative, which is achieved by using the absolute value of x.)

dydx=1|x|x21{\displaystyle {\frac {dy}{dx}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}

Using the chain rule

[edit]

Alternatively, the derivative of arcsecant may be derived from the derivative of arccosine using thechain rule.

Let

y=arcsecx=arccos(1x){\displaystyle y=\operatorname {arcsec} x=\arccos \left({\frac {1}{x}}\right)}

Where

|x|1{\displaystyle |x|\geq 1} andy[0,π2)(π2,π]{\displaystyle y\in \left[0,{\frac {\pi }{2}}\right)\cup \left({\frac {\pi }{2}},\pi \right]}

Then, applying the chain rule toarccos(1x){\displaystyle \arccos \left({\frac {1}{x}}\right)}:

dydx=11(1x)2(1x2)=1x211x2=1x2x21x2=1x2x21=1|x|x21{\displaystyle {\frac {dy}{dx}}=-{\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)={\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}={\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}={\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}

Differentiating the inverse cosecant function

[edit]

Using implicit differentiation

[edit]

Let

y=arccscx |x|1{\displaystyle y=\operatorname {arccsc} x\ \mid |x|\geq 1}

Then

x=cscy  y[π2,0)(0,π2]{\displaystyle x=\csc y\ \mid \ y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}
dxdy=cscycoty=|x|x21{\displaystyle {\frac {dx}{dy}}=-\csc y\cot y=-|x|{\sqrt {x^{2}-1}}}

(The absolute value in the expression is necessary as the product of cosecant and cotangent in the interval of y is always nonnegative, while the radicalx21{\displaystyle {\sqrt {x^{2}-1}}} is always nonnegative by definition of the principal square root, so the remaining factor must also be nonnegative, which is achieved by using the absolute value of x.)

dydx=1|x|x21{\displaystyle {\frac {dy}{dx}}={\frac {-1}{|x|{\sqrt {x^{2}-1}}}}}

Using the chain rule

[edit]

Alternatively, the derivative of arccosecant may be derived from the derivative of arcsine using thechain rule.

Let

y=arccscx=arcsin(1x){\displaystyle y=\operatorname {arccsc} x=\arcsin \left({\frac {1}{x}}\right)}

Where

|x|1{\displaystyle |x|\geq 1} andy[π2,0)(0,π2]{\displaystyle y\in \left[-{\frac {\pi }{2}},0\right)\cup \left(0,{\frac {\pi }{2}}\right]}

Then, applying the chain rule toarcsin(1x){\displaystyle \arcsin \left({\frac {1}{x}}\right)}:

dydx=11(1x)2(1x2)=1x211x2=1x2x21x2=1x2x21=1|x|x21{\displaystyle {\frac {dy}{dx}}={\frac {1}{\sqrt {1-({\frac {1}{x}})^{2}}}}\cdot \left(-{\frac {1}{x^{2}}}\right)=-{\frac {1}{x^{2}{\sqrt {1-{\frac {1}{x^{2}}}}}}}=-{\frac {1}{x^{2}{\frac {\sqrt {x^{2}-1}}{\sqrt {x^{2}}}}}}=-{\frac {1}{{\sqrt {x^{2}}}{\sqrt {x^{2}-1}}}}=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}

See also

[edit]

References

[edit]

Bibliography

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Differentiation_of_trigonometric_functions&oldid=1277507791"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp