Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Counting measure

From Wikipedia, the free encyclopedia
Mathematical concept

Inmathematics, specificallymeasure theory, thecounting measure is an intuitive way to put ameasure on anyset – the "size" of asubset is taken to be the number of elements in the subset if the subset has finitely many elements, andinfinity{\displaystyle \infty } if the subset isinfinite.[1]

The counting measure can be defined on anymeasurable space (that is, any setX{\displaystyle X} along with a sigma-algebra) but is mostly used oncountable sets.[1]

In formal notation, we can turn any setX{\displaystyle X} into a measurable space by taking thepower set ofX{\displaystyle X} as thesigma-algebraΣ;{\displaystyle \Sigma ;} that is, all subsets ofX{\displaystyle X} are measurable sets. Then the counting measureμ{\displaystyle \mu } on this measurable space(X,Σ){\displaystyle (X,\Sigma )} is the positive measureΣ[0,+]{\displaystyle \Sigma \to [0,+\infty ]} defined byμ(A)={|A|if A is finite+if A is infinite{\displaystyle \mu (A)={\begin{cases}\vert A\vert &{\text{if }}A{\text{ is finite}}\\+\infty &{\text{if }}A{\text{ is infinite}}\end{cases}}}for allAΣ,{\displaystyle A\in \Sigma ,} where|A|{\displaystyle \vert A\vert } denotes thecardinality of the setA.{\displaystyle A.}[2]

The counting measure on(X,Σ){\displaystyle (X,\Sigma )} isσ-finite if and only if the spaceX{\displaystyle X} iscountable.[3]

Integration on the set of natural numbers with counting measure

[edit]

Take the measure space(N,2N,μ){\displaystyle (\mathbb {N} ,2^{\mathbb {N} },\mu )}, where2N{\displaystyle 2^{\mathbb {N} }} is the set of all subsets of the naturals andμ{\displaystyle \mu } the counting measure. Take any measurablef:N[0,]{\displaystyle f:\mathbb {N} \to [0,\infty ]}. As it is defined onN{\displaystyle \mathbb {N} },f{\displaystyle f} can be represented pointwise asf(x)=n=1f(n)1{n}(x)=limM n=1Mf(n)1{n}(x) ϕM(x)=limMϕM(x){\displaystyle f(x)=\sum _{n=1}^{\infty }f(n)1_{\{n\}}(x)=\lim _{M\to \infty }\underbrace {\ \sum _{n=1}^{M}f(n)1_{\{n\}}(x)\ } _{\phi _{M}(x)}=\lim _{M\to \infty }\phi _{M}(x)}

EachϕM{\displaystyle \phi _{M}} is measurable. MoreoverϕM+1(x)=ϕM(x)+f(M+1)1{M+1}(x)ϕM(x){\displaystyle \phi _{M+1}(x)=\phi _{M}(x)+f(M+1)\cdot 1_{\{M+1\}}(x)\geq \phi _{M}(x)}. Still further, as eachϕM{\displaystyle \phi _{M}} is a simple functionNϕMdμ=N(n=1Mf(n)1{n}(x))dμ=n=1Mf(n)μ({n})=n=1Mf(n)1=n=1Mf(n){\displaystyle \int _{\mathbb {N} }\phi _{M}d\mu =\int _{\mathbb {N} }\left(\sum _{n=1}^{M}f(n)1_{\{n\}}(x)\right)d\mu =\sum _{n=1}^{M}f(n)\mu (\{n\})=\sum _{n=1}^{M}f(n)\cdot 1=\sum _{n=1}^{M}f(n)}Hence by the monotone convergence theoremNfdμ=limMNϕMdμ=limMn=1Mf(n)=n=1f(n){\displaystyle \int _{\mathbb {N} }fd\mu =\lim _{M\to \infty }\int _{\mathbb {N} }\phi _{M}d\mu =\lim _{M\to \infty }\sum _{n=1}^{M}f(n)=\sum _{n=1}^{\infty }f(n)}

Discussion

[edit]

The counting measure is a special case of a more general construction. With the notation as above, any functionf:X[0,){\displaystyle f:X\to [0,\infty )} defines a measureμ{\displaystyle \mu } on(X,Σ){\displaystyle (X,\Sigma )} viaμ(A):=aAf(a) for all AX,{\displaystyle \mu (A):=\sum _{a\in A}f(a)\quad {\text{ for all }}A\subseteq X,}where the possibly uncountable sum of real numbers is defined to be thesupremum of the sums over all finite subsets, that is,yY Ry := supFY,|F|<{yFy}.{\displaystyle \sum _{y\,\in \,Y\!\ \subseteq \,\mathbb {R} }y\ :=\ \sup _{F\subseteq Y,\,|F|<\infty }\left\{\sum _{y\in F}y\right\}.}Takingf(x)=1{\displaystyle f(x)=1} for allxX{\displaystyle x\in X} gives the counting measure.

See also

[edit]

References

[edit]
  1. ^abCounting Measure atPlanetMath.
  2. ^Schilling, René L. (2005).Measures, Integral and Martingales. Cambridge University Press. p. 27.ISBN 0-521-61525-9.
  3. ^Hansen, Ernst (2009).Measure Theory (Fourth ed.). Department of Mathematical Science, University of Copenhagen. p. 47.ISBN 978-87-91927-44-7.
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related


Retrieved from "https://en.wikipedia.org/w/index.php?title=Counting_measure&oldid=1268555826"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp