![]() | This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages) (Learn how and when to remove this message)
|
Part of a series on |
Rail transport |
---|
![]() |
Infrastructure |
Rolling stock |
Urban rail transit |
Topics |
![]() |
Acontrol car,cab car (North America),control trailer, ordriving trailer (UK, Ireland, Australia and India) is a non-powered rail vehicle from which a train can be operated. As dedicated vehicles or regular passenger cars, they have one or two driver compartments with all the controls and gauges required to remotely operate the locomotive, including exterior locomotive equipment such ashorns, bells, ploughs, and lights. They also have communications and safety systems such asGSM-R orEuropean Train Control System (ETCS). Control cars enablepush-pull operation when located on the end of a train opposite itslocomotive by allowing the train to reverse direction at aterminus without moving the locomotive or turning the train around.
Control cars can carry passengers, baggage, and mail, and may, when used together with diesel locomotives, contain anengine-generator set to providehead-end power (HEP). They can also be used with apower car or arailcar.
European railways have used control cars since the 1920s; they first appeared in the United States in the 1960s.[1]
Control cars communicate with the locomotive via cables that arejumped between cars. North America and Ireland use a standardAAR 27-wiremultiple unit cable, while other countries use cables with up to 61 wires. A more recent method is to control the train through aTime-Division Multiplexed (TDM) connection, which usually works with two protected wires.
In North America,cab cars are used primarily forcommuter rail and, less frequently, for longer distance trains. There are both single and bilevel models; styling ranges from blunt ends to newer, more aerodynamic, streamlined cabs. They may be very similar to regular coaches, to the point of including a gangway between cars so that they could be used in the middle of a passenger train like a regular coach if necessary.
TheChicago and North Western Railway had 42 control cabs built byPullman-Standard in 1960, which eliminated the need for its trains or locomotives to be turned around.[1] It was an outgrowth of multiple-unit operation that was already common on diesel locomotives of the time. TheCanadian transit agencyExo uses control cars on all its trains. Amtrak also has a number ofex-Budd Metroliner cab cars, which are used primarily for push pull services on theKeystone Service andAmtrakHartford Line. TheLong Island Rail Road uses cab cars on itsC3 double deck coaches.
During the mid-1990s, as push-pull operations became more common in the United States, cab-cars came under criticism[2][3] for providing less protection to engine crews duringlevel crossing accidents. This has been addressed by providing additional reinforcing in cab cars. This criticism became stronger after the2005 Glendale train crash, in which aMetrolink collided with aJeep Grand Cherokee at a level crossing in California. The train was traveling with its cab car in the front, and the train jackknifed.[4] Eleven people were killed in the accident, and about 180 were injured. Ten years later, in early 2015,another collision occurred inOxnard, California, involving one of Metrolink's improved "Rotem" cab cars at the front of the train hitting a truck at a crossing. The truck driver left his vehicle before the impact, but the collision resulted in multiple car derailments and further cars jackknifing causing widespread injury.
From the 1970s until 1999, theLong Island Rail Road used a number of older locomotives converted to "power packs". The original prime movers were replaced with 600 horsepower (450 kW) engines/generators solely for supplying HEP with the engineer'scontrol stand left intact. Locomotives converted includedAlco FA-1s and FA-2s,EMD F7s, and oneF9. One FA was further converted into a power car for theC1 bi-level cars in 1991. The railroad has since switched to classic cab cars with aDE30AC/DM30AC locomotive on some trains. Trains going intoPenn Station require two DM30AC locomotives on each end in order to make use of their3rd rail pickups.[5]
Until the 1980s,Ontario'sGO Transit had a similar Auxiliary Power Unit (APU) program for EMD FP7s. They were frequently used with GP40-2Ws and GP40M-2s, which lacked HEP to power trains. They also found use with HEP-equippedGP40TCs and F40PHs, and were sometimes leased to other railroads. They were eventually retired in 1995 upon the arrival of theEMD F59PHs and subsequently scrapped, except for one F7A and one F7B, which were sold toTri-Rail and theOntario Northland Railway, respectively.[6]
MARC had a former F7 unit, #7100, also converted into an APCU, or All-Purpose Control Unit, which occasionally substituted for a cab car. It was rebuilt with a HEP generator, newer cab controls, and fitted with aNathan Airchime K5LA. It was used up until the late 2000s, and was donated to theB&O Railroad Museum in 2010.[7]
Amtrak developed their Non-powered Control Unit (NPCU) by removing the prime mover, mainalternator, and traction motors from surplusEMD F40PH locomotives. Thecontrol stand was left in place, as were equipment allowinghorn, bell, and headlight operation. A floor and roll-up side-doors were then installed to allow for baggage service, leading to the nickname "cab-baggage cars" or "cabbages".
Six NPCUs rebuilt forCascades service in the Pacific Northwest do not have the roll-up side doors, because theTalgo VI sets on which they operated had a baggage car as part of the trainset, though #90230, #90250, and #90251 were later fitted with these doors. #90250 was originally painted in theCascades scheme, but was later repainted into Phase V livery. These units have since operated with standard Amtrak cars (Horizon and Amfleet) since the Talgo VI's retirement in 2020.
Four NPCUs, #90213, #90214, #90220 and #90224 are exclusively used on theDowneaster. These units have Downeaster logos applied to the front and the sides of the units.
Three NPCUs are designated for use onAmtrak California services. They are painted in a paint scheme similar to the old with blue-and-teal striped livery used byCaltrain between 1985 and 1997.
In 2011, Amtrak F40PH 406 was converted to an NPCU to enablepush-pull operation of Amtrak's 40th-anniversary exhibit train; in addition a HEP generator was installed to supply auxiliary electricity. Unlike other NPCUs, the 406 resembles an operational F40PH externally and initially retained its original number.[8] But as of 2024, it was renumbered to 90406 to avoid duplicate numbering with the ALC-42s.
Though not being completely converted to cab cars, similarly,Coaster in Southern California has a couple of their former F40PH units, those being 2103 and 2105 at the Pacific Southwest Railway Museum and Southern California Railway Museum, respectively, that currently have their prime movers drilled in and have to used as cab cars via multiple unit operation.
In 2017,NCDOT started a Cab Control Unit (CCU) program using ex-GOF59PHs.[9] Five CCUs have been ordered, numbered 101-105. These are used on thePiedmont.
In 2023, Amtrak began testing a formerHHP-8 locomotive as a cab car with the aim of supplementing or replacing the existingex-Metroliner cab cars until theAiro fleet arrives.[10] As of July 2024, eight total conversions are planned.
In 2024, Amtrak started converting theirGE P42DC locomotives into Non-Powered Control Units, starting with Amtrak P42DC #184 the original Phase I heritage unit, which is now Amtrak P42C #9700.[11]
There are many examples of this type of vehicle in operation inEurope.
In Belarus, as part of push-pull trains, control and intermediate cars fromDR1 DMUs manufactured by theRiga Machine-Building Plant (RVR) are used. After the decommissioning of power cars, some of them were converted into control cars by replacing the engine room with a passenger compartment, and at the other end of a train, one unit of2M62 or 2M62U diesel locomotives started to use instead of another DR1 power car. Later, the control cars of DRB1 trains began to be produced by RVR initially for push-pull trains on a par with DMUs. RVR also produced DRB2 control cars for such trainsets, which a similar to control cars of theER9 EMUs.
NMBS/SNCB make extensive use of push-pull operation. Trains are powered byclass 21class 27 orclass 18 electric locomotives and are operated in one direction from a driving carriage.
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(November 2021) (Learn how and when to remove this message) |
![]() | You can helpexpand this section with text translated fromthe corresponding article in Czech. (November 2021)Click [show] for important translation instructions.
|
In the Czech Republic, these control cabs were hardly used in the past. The main reason was concerns about the greater tendency of trainsets that do not have a traction unit at the head of the train toderail. Earlier legislation considered such a train to be sunk and for this reason the speed of such a train was limited to 30 km/h (19 mph).
TheVR fleet includes 42 cab cars (Finnish:ohjausvaunu), classified as Edo.[12]
TheCorail fleet includes 28voitures-pilote, classified as B6Dux.
The DanishABs were acquired in 2002. The control car is manufactured by Bombardier. They are to be upgraded forERTMS, starting 2019.[13]
The first German attempts to use control cars (German:Steuerwagen) and remote control-equipped steam locomotives were beforeWorld War II by theDeutsche Reichsbahn (DRB). The driver's control instructions were transmitted from the control car to the locomotive by aChadburn-type machine telegraph (similar to engine order telegraphs onships). The order had to be immediately acknowledged and implemented by the automatic firebox controllers. This indirect control was judged as impractical and unsafe, because, although the driver controlled the brake directly, the danger existed that in an emergency the locomotive would continue supplying "push" power for some time and possibly derail the train.
Attempts to use electric locomotives (beginning with a convertedE 04 class model) were more promising, as the engine driver could control the locomotive directly. World War II interrupted the test program, despite good successes. Only after the war would control car operation be slowly accepted, when locomotives and suitably equipped cars became available.
The length of train consists in push-pull operations was originally limited to 10 cars for reasons of guidance dynamics. A speed limit of 120 km/h (75 mph) was also imposed, rising to 140 km/h (87 mph) in 1980. This was not an operational hindrance, as push-pull trains were generally initially used in six-car commuter trains.
Only since the mid-1990s have long-distance trains, which can have up to 14 cars and travel at speeds of 200 km/h (120 mph), been operated with control cars. A special circumstance is theICE 2, which may operate with the control car in the lead at up to 250 km/h (160 mph) on the recently builthigh-speed lines.
Control cars inHungary are present since the 1960s. The first type of control cars used byMÁV, that is still used on low traffic branch lines was the BDt (then called BDat) series, with the BDt 100 series being capable of travelling with diesel (and formerly with steam) engines (most notably the M41 series), and the BDt 300 series being capable of travelling with electricV43 series engines. These carriages were built by the MÁVDunakeszi Main Workshop between 1962 and 1972.[14]
Most of the BDt 100 series, with lack of function after theBzmot series overtook the shrinking number of unelectrified branch lines, were converted to BDt 400 series by the Dunakeszi Main Workshop, now led byBombardier, in 2005 (after a prototype series of 7 built in 1999). They are only compatible with the V43 2xxx series, as only they have digital remote control.
With the purchase of the formerEast German carriage series from theDB, called "Halberstadters", 27 control cars serialed Bybdtee arrived in Hungary. Although a V43 3xxx series was introduced that has special remote control compatible to these control cars, because of the Halberstadters' rare use as branch line carriages, they are rarely used as effective control cars, and are more frequently seen as a regular carriage because of their bicycle storage space.
There are more carriages that are technically separate control cars, like the Bdx series that were part of the (now deleted from rolling stock) MDmotDMU series, or the Bmxt series that is part of the BDVmot and BVhmotEMU series, but they are considered and treated as a part of their DMU and EMU unit respectively.
Iarnród Éireann operates two classes of push-pull trainsets, each with its own Control Car:
All Mark 4 Control Cars have full-sized driving cabs with EMD locomotive type power and brake controls. Locomotive control is by means of anAAR system, modified by Iarnród Éireann (IÉ) to include control of train doors and operate with201 Class locomotives.
Iarnród Éireann formerly operated Mark 3 Control Cars from 1989 until 2009:
In Italy, the first push-pull trains began to run after World War II.
At the time there were no systems to actually remote command the rearlocomotive, so an engineer had to take place in it and command traction, following instructions (via an apposite intercom) given by the other driver, who remained in the front car, commanding brakes and sighting signals.This lasted until the adoption of the 78-wire cable in the 1970s, which enabled full remote commanding from control cars.
Today push-pull trains are very common, and different kinds of control cars are employed:
These types allow full remote control of anyItalian locomotive supplied with standard 78-wire cable, except for UIC Z1, which are used on IC services and are only able to commandclass E.402 locomotives, and MDVC Diesel-specific version, usable only withclass D.445 Diesel locomotives.
The same driving commands are used for both rheostatic and electronic locomotives, but their meanings change.
Vivalto type control cars, at this time, can only remote commandClass E.464 andClass E.632 locomotives, because of software issues, though are able to command other locomotive types.Vivalto cars can also useTCN remote control cable.
Driving cars can be recognized because of the "np" in their identification number and usually also have a dedicated compartment for bicycle and luggage transportation.
There also are specificEMU/DMU non-motorized units control cars, which (inTrenitalia) are classified as Le / Ln XXX with no significant difference between them and motorized units except the lack of traction motors.
The use of cab cars (Dutch: stuurstandrijtuig) in The Netherlands byNS is becoming rare due to the conversion of the sets to EMUs and the discontinued use of control cars onintercity direct services.
The use of a "virtualEMU" concept for some short-distance trains in the north of the country is where train sets are formed of a driving carriage, two or three intermediate carriages and aclass 1700 electric locomotive. These train sets are diagrammed as if they were all EMUs resulting in formations with two locomotives, often at intermediate positions in the train. Most of the train sets have been converted into double-decker EMUs calledDDZ.
In Poland, the term used is "wagon sterowniczy", which literally means "control carriage".
Koleje Mazowieckie use driving trailers on their regional services. The first batch ofdouble-decker driving trailers and cars, the TwindexxBombardier Double-deck Coaches, was delivered in 2008.[15] The second batch,PESA-made Sundecks, was delivered at the end of 2015.[16]
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(October 2020) (Learn how and when to remove this message) |
In 2011, the state-owned Slovakian railway operatorZSSK introduced a JNR-based passenger train operator; apush-pull operation train series manufactured byŠkoda Transportation, includingClass 381 electric109E locomotives and evenClass 263 alternating-current locomotives, provides the vehicles utilised by the company. TheClass 951 system train coaches remain introduced atBratislava hlavná stanica, which these generally operate in conjunction withcommuter rail andregional rail.
There has only been one type of control car in service in Sweden. Only three examples of theAFM7 were made and they are currently in service withSJ in theMälaren Valley. The Swedish word for control car ismanövervagn which literally means "manoeuvre car".
Swiss driving trailers operate in many different configurations. There are several models currently in service onS-Bahn networks as well as regional,InterRegio, andInterCity services. These are operated by the federal railway system (SBB) as well as various private railroads throughout the country (including narrow gauge lines) and intoFrance, Germany, andItaly.
Driving trailers are classified after the UIC-lettering system, adding a "t,” givingBt (second class),BDt (second class + baggage),ABt (first + second class), orDt (baggage).
For Intercity trains there are the Bt IC that work together with EW IV and the double-deck version for theIC 2000 trainsets, working withRe 460.
The Zürich S-Bahn trainsets withRe 450 work in fix consists of Re 450 - B - AB - Bt but intermediate cars and driving trailers are numbered as coaching stock.
"NPZ" Regional and S-Bahn trains withRBDe 560 usually have a matching Bt driving trailer. Replacement by an older BDt EW I/II is technically possible. Older driving trailers, mostly BDt EW I/II and a few remaining Dt of SBB can be used withRe 420 andRBe 540 and some motive power of private railways. In theory alsoRe 430 and Re 620 can be controlled but these classes only work freight trains today.
TheBLS operates four groups of driving trailers:
Südostbahn had a fleet of ABt for their BDe 4/4 but they will soon be fully replaced by FLIRTs. NPZ ABt exist for the two types of RBDe 566 SOB owns (566 071-076 ex BT and 566 077-080 ex SOB of the SBB-type). Nine BDt are used for the Voralpen-Express with Re 456, Re 446 orSBB-CFF-FFS Re 420.
The narrow gaugeZentralbahn ABt can controlHGe 101 (ex SBB),De 110,BDeh 140 (ex LSE) and the new "SPATZ"ABe 130.
TheRhaetian Railway (RhB) has, besides the ABDt that work with Be 4/4 511-516, a group of driving trailers that can be used with their Ge 4/4 I, II and III locomotives. Three of them are specially fitted for Vereinacar shuttle trains.
TheMatterhorn-Gotthard-Bahn (MGB) has numerous driving trailers for almost all types of motive power. They work regional trains andcar shuttle trains through theFurka Base Tunnel.
In the United Kingdom,driving trailers may have one or two driving cabs. They have been used for many decades, with theGreat Western Railway often usingautocoaches on branch line services. These allowed a train driver to remotely control the regulator and reverser of a suitably equipped locomotive. The fireman remained on the locomotive to operate the boiler and locomotive whistle. Locomotives were commonly sandwiched between a pair of autocoaches, allowing a maximum of four to be used.
A Driving Brake Standard Open orDBSO is a specially convertedMark 2 passenger car. Initially operated byScotRail from 1979, they were operated onInterCity andAnglia Railways services on theGreat Eastern Main Line from the late-1980s until 2006. Some have been refurbished for use onNetwork Rail test trains. Others were used byDirect Rail Services onCumbrian Coast line locomotive hauled passenger trains under contract toNorthern Rail until late 2018 when they were replaced by regularDiesel multiple units.[citation needed]
TheMark 5a sets formerly operated byTransPennine Express include a purpose built Driving Trailer.
A Driving Van Trailer orDVT is a more modern type of control car, purpose-built to include space for baggage and a guard's office. The DVT was developed in the late-1980s from the DBSO and designed to be used withMark 3s onWest Coast Main Line services andMark 4s on theEast Coast Main Line. As of February 2021, Mark 3 DVTs are in service withChiltern Railways andNetwork Rail, with Mark 4 DVTs in service withLondon North Eastern Railway with some to be operated byTransport for Wales Rail from 2021. Former operators of the Mark 3 DVTs areArriva Trains Wales,Greater Anglia,[17]KeolisAmey Wales,Virgin Trains West Coast[18] andWrexham & Shropshire.
All of the driving trailers are generally on much of the earlier rolling stock. Examples of these driving trailers were on some old (now most likely scrapped) red rattler cars along with C and K sets (4 trailers). The driving trailers from the K set were later converted to ordinary trailers. These can be noted by the positioning of the pantograph. On a single set the pantographs are placed on the second and third cars, and on an eight car train (2 sets combined) they're placed on the second, third, sixth and seventh cars. Some third Generation of Sydney Trains, Tangaras or T sets, have driving trailers but are equipped to supply electricity to the train though the use of a pantograph.
Waratahs (A sets) have two driving trailers (one at each end) with power trailers in between the driving and non-driving trailers.
2100 class railcar are driving trailers, being placed in a 2-car consist with a 2000 class power unit, sometimes with a second trailer to make a 3-car consist-the power car would be placed in between the two trailers. As of 2018, only three of these trailers exist, the rest were scrapped. Two are preserved and one that was donated to South Australian Metropolitan Fire Service (cut-in half). Three 2000 class power units out of the twelve have had the same fate.
Experiments with light railcars were aimed at cutting costs on lightly used branch lines.[20]Autotrains were built in 1906[21] and 1907[22] and by 1925NZR had 8 88-seat and 5 72-seat motor trains.[23] In 1908 there was a motor train Auckland suburban service toOtahuhu[24] and betweenMorrinsville andPutaruru in 1913.[25]
InAuckland,Transdev Auckland operated 21DC class locomotives and fourDFT class locomotives (owned byKiwiRail) in push-pull mode with 24 sets of 3-5 SA cars and an SD driving car with driving cab and remote controls (exBritish Rail Mark 2 carriages rebuilt for suburban service), owned by Auckland Transport.[26] The carriages were replaced with EMUs in July 2015.
Control cars are available on most Diesel multiple units operated bySri Lanka Railways.
Control cars exist on all push-pull trains operated byIsrael Railways, as well as their Siemens Desiro electric multiple unit sets.
Control cabs are generally found on DEMU's, EMU's and MEMU's in India.
TheSagano Scenic Railway uses control cars with the control car on the Kameoka end of the train.