Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Conjugate gradient method

From Wikipedia, the free encyclopedia
(Redirected fromConjugate gradient)
Mathematical optimization algorithm
A comparison of the convergence ofgradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at mostn steps, wheren is the size of the matrix of the system (heren = 2).

Inmathematics, theconjugate gradient method is analgorithm for thenumerical solution of particularsystems of linear equations, namely those whose matrix ispositive-semidefinite. The conjugate gradient method is often implemented as aniterative algorithm, applicable tosparse systems that are too large to be handled by a direct implementation or other direct methods such as theCholesky decomposition. Large sparse systems often arise when numerically solvingpartial differential equations or optimization problems.

The conjugate gradient method can also be used to solve unconstrainedoptimization problems such asenergy minimization. It is commonly attributed toMagnus Hestenes andEduard Stiefel,[1][2] who programmed it on theZ4,[3] and extensively researched it.[4][5]

Thebiconjugate gradient method provides a generalization to non-symmetric matrices. Variousnonlinear conjugate gradient methods seek minima of nonlinear optimization problems.

Description of the problem addressed by conjugate gradients

[edit]

Suppose we want to solve thesystem of linear equations

Ax=b{\displaystyle \mathbf {A} \mathbf {x} =\mathbf {b} }

for the vectorx{\displaystyle \mathbf {x} }, where the knownn×n{\displaystyle n\times n} matrixA{\displaystyle \mathbf {A} } issymmetric (i.e.,AT=A{\displaystyle \mathbf {A} ^{\mathsf {T}}=\mathbf {A} }),positive-definite (i.e.xTAx>0{\displaystyle \mathbf {x} ^{\mathsf {T}}\mathbf {Ax} >0} for all non-zero vectorsx{\displaystyle \mathbf {x} } inRn{\displaystyle \mathbb {R} ^{n}}), andreal, andb{\displaystyle \mathbf {b} } is known as well. We denote the unique solution of this system byx{\displaystyle \mathbf {x} _{*}}.

Derivation as a direct method

[edit]
Main article:Derivation of the conjugate gradient method

The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of theArnoldi/Lanczos iteration foreigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the residuals and conjugacy of the search directions. These two properties are crucial to developing the well-known succinct formulation of the method.

We say that two non-zero vectorsu{\displaystyle \mathbf {u} } andv{\displaystyle \mathbf {v} } are conjugate (with respect toA{\displaystyle \mathbf {A} }) if

uTAv=0.{\displaystyle \mathbf {u} ^{\mathsf {T}}\mathbf {A} \mathbf {v} =0.}

SinceA{\displaystyle \mathbf {A} } is symmetric and positive-definite, the left-hand side defines aninner product

uTAv=u,vA:=Au,v=u,ATv=u,Av.{\displaystyle \mathbf {u} ^{\mathsf {T}}\mathbf {A} \mathbf {v} =\langle \mathbf {u} ,\mathbf {v} \rangle _{\mathbf {A} }:=\langle \mathbf {A} \mathbf {u} ,\mathbf {v} \rangle =\langle \mathbf {u} ,\mathbf {A} ^{\mathsf {T}}\mathbf {v} \rangle =\langle \mathbf {u} ,\mathbf {A} \mathbf {v} \rangle .}

Two vectors are conjugate if and only if they are orthogonal with respect to this inner product. Being conjugate is a symmetric relation: ifu{\displaystyle \mathbf {u} } is conjugate tov{\displaystyle \mathbf {v} }, thenv{\displaystyle \mathbf {v} } is conjugate tou{\displaystyle \mathbf {u} }. Suppose that

P={p1,,pn}{\displaystyle P=\{\mathbf {p} _{1},\dots ,\mathbf {p} _{n}\}}

is a set ofn{\displaystyle n} mutually conjugate vectors with respect toA{\displaystyle \mathbf {A} }, i.e.piTApj=0{\displaystyle \mathbf {p} _{i}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{j}=0} for allij{\displaystyle i\neq j}. ThenP{\displaystyle P} forms abasis forRn{\displaystyle \mathbb {R} ^{n}}, and we may express the solutionx{\displaystyle \mathbf {x} _{*}} ofAx=b{\displaystyle \mathbf {Ax} =\mathbf {b} } in this basis:

x=i=1nαipiAx=i=1nαiApi.{\displaystyle \mathbf {x} _{*}=\sum _{i=1}^{n}\alpha _{i}\mathbf {p} _{i}\Rightarrow \mathbf {A} \mathbf {x} _{*}=\sum _{i=1}^{n}\alpha _{i}\mathbf {A} \mathbf {p} _{i}.}

Left-multiplying the problemAx=b{\displaystyle \mathbf {Ax} =\mathbf {b} } with the vectorpkT{\displaystyle \mathbf {p} _{k}^{\mathsf {T}}} yields

pkTb=pkTAx=i=1nαipkTApi=i=1nαipk,piA=αkpk,pkA{\displaystyle \mathbf {p} _{k}^{\mathsf {T}}\mathbf {b} =\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {x} _{*}=\sum _{i=1}^{n}\alpha _{i}\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{i}=\sum _{i=1}^{n}\alpha _{i}\left\langle \mathbf {p} _{k},\mathbf {p} _{i}\right\rangle _{\mathbf {A} }=\alpha _{k}\left\langle \mathbf {p} _{k},\mathbf {p} _{k}\right\rangle _{\mathbf {A} }}

and so

αk=pk,bpk,pkA.{\displaystyle \alpha _{k}={\frac {\langle \mathbf {p} _{k},\mathbf {b} \rangle }{\langle \mathbf {p} _{k},\mathbf {p} _{k}\rangle _{\mathbf {A} }}}.}

This gives the following method[4] for solving the equationAx=b{\displaystyle \mathbf {Ax} =\mathbf {b} }: find a sequence ofn{\displaystyle n} conjugate directions, and then compute the coefficientsαk{\displaystyle \alpha _{k}}.

As an iterative method

[edit]

If we choose the conjugate vectorspk{\displaystyle \mathbf {p} _{k}} carefully, then we may not need all of them to obtain a good approximation to the solutionx{\displaystyle \mathbf {x} _{*}}. So, we want to regard the conjugate gradient method as an iterative method. This also allows us to approximately solve systems wheren{\displaystyle n} is so large that the direct method would take too much time.

We denote the initial guess forx{\displaystyle \mathbf {x} _{*}} byx0{\displaystyle \mathbf {x} _{0}} (we can assume without loss of generality thatx0=0{\displaystyle \mathbf {x} _{0}=\mathbf {0} }, otherwise consider the systemAz=bAx0{\displaystyle \mathbf {Az} =\mathbf {b} -\mathbf {Ax} _{0}} instead). Starting withx0{\displaystyle \mathbf {x} _{0}} we search for the solution and in each iteration we need a metric to tell us whether we are closer to the solutionx{\displaystyle \mathbf {x} _{*}} (that is unknown to us). This metric comes from the fact that the solutionx{\displaystyle \mathbf {x} _{*}} is also the unique minimizer of the followingquadratic function

f(x)=12xTAxxTb,xRn.{\displaystyle f(\mathbf {x} )={\tfrac {1}{2}}\mathbf {x} ^{\mathsf {T}}\mathbf {A} \mathbf {x} -\mathbf {x} ^{\mathsf {T}}\mathbf {b} ,\qquad \mathbf {x} \in \mathbf {R} ^{n}\,.}

The existence of a unique minimizer is apparent as itsHessian matrix of second derivatives is symmetric positive-definite

H(f(x))=A,{\displaystyle \mathbf {H} (f(\mathbf {x} ))=\mathbf {A} \,,}

and that the minimizer (useDf(x)=0{\displaystyle Df(\mathbf {x} )=0}) solves the initial problem follows from its first derivative

f(x)=Axb.{\displaystyle \nabla f(\mathbf {x} )=\mathbf {A} \mathbf {x} -\mathbf {b} \,.}

This suggests taking the first basis vectorp0{\displaystyle \mathbf {p} _{0}} to be the negative of the gradient off{\displaystyle f} atx=x0{\displaystyle \mathbf {x} =\mathbf {x} _{0}}. The gradient off{\displaystyle f} equalsAxb{\displaystyle \mathbf {Ax} -\mathbf {b} }. Starting with an initial guessx0{\displaystyle \mathbf {x} _{0}}, this means we takep0=bAx0{\displaystyle \mathbf {p} _{0}=\mathbf {b} -\mathbf {Ax} _{0}}. The other vectors in the basis will be conjugate to the gradient, hence the nameconjugate gradient method. Note thatp0{\displaystyle \mathbf {p} _{0}} is also theresidual provided by this initial step of the algorithm.

Letrk{\displaystyle \mathbf {r} _{k}} be theresidual at thek{\displaystyle k}th step:

rk=bAxk.{\displaystyle \mathbf {r} _{k}=\mathbf {b} -\mathbf {Ax} _{k}.}

As observed above,rk{\displaystyle \mathbf {r} _{k}} is the negative gradient off{\displaystyle f} atxk{\displaystyle \mathbf {x} _{k}}, so thegradient descent method would require to move in the directionrk. Here, however, we insist that the directionspk{\displaystyle \mathbf {p} _{k}} must be conjugate to each other. A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example ofGram-Schmidt orthonormalization. This gives the following expression:

pk=rki<krkTApipiTApipi{\displaystyle \mathbf {p} _{k}=\mathbf {r} _{k}-\sum _{i<k}{\frac {\mathbf {r} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{i}}{\mathbf {p} _{i}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{i}}}\mathbf {p} _{i}}

(see the picture at the top of the article for the effect of the conjugacy constraint on convergence). Following this direction, the next optimal location is given by

xk+1=xk+αkpk{\displaystyle \mathbf {x} _{k+1}=\mathbf {x} _{k}+\alpha _{k}\mathbf {p} _{k}}

with

αk=pkT(bAxk)pkTApk=pkTrkpkTApk,{\displaystyle \alpha _{k}={\frac {\mathbf {p} _{k}^{\mathsf {T}}(\mathbf {b} -\mathbf {Ax} _{k})}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}}={\frac {\mathbf {p} _{k}^{\mathsf {T}}\mathbf {r} _{k}}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}},}

where the last equality follows from the definition ofrk{\displaystyle \mathbf {r} _{k}} .The expression forαk{\displaystyle \alpha _{k}} can be derived if one substitutes the expression forxk+1 intof and minimizing it with respect toαk{\displaystyle \alpha _{k}}

f(xk+1)=f(xk+αkpk)=:g(αk)g(αk)=!0αk=pkT(bAxk)pkTApk.{\displaystyle {\begin{aligned}f(\mathbf {x} _{k+1})&=f(\mathbf {x} _{k}+\alpha _{k}\mathbf {p} _{k})=:g(\alpha _{k})\\g'(\alpha _{k})&{\overset {!}{=}}0\quad \Rightarrow \quad \alpha _{k}={\frac {\mathbf {p} _{k}^{\mathsf {T}}(\mathbf {b} -\mathbf {Ax} _{k})}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}}\,.\end{aligned}}}

The resulting algorithm

[edit]

The above algorithm gives the most straightforward explanation of the conjugate gradient method. Seemingly, the algorithm as stated requires storage of all previous searching directions and residue vectors, as well as many matrix–vector multiplications, and thus can be computationally expensive. However, a closer analysis of the algorithm shows thatri{\displaystyle \mathbf {r} _{i}} is orthogonal torj{\displaystyle \mathbf {r} _{j}}, i.e.riTrj=0{\displaystyle \mathbf {r} _{i}^{\mathsf {T}}\mathbf {r} _{j}=0}, forij{\displaystyle i\neq j}. Andpi{\displaystyle \mathbf {p} _{i}} isA{\displaystyle \mathbf {A} }-orthogonal topj{\displaystyle \mathbf {p} _{j}}, i.e.piTApj=0{\displaystyle \mathbf {p} _{i}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{j}=0}, forij{\displaystyle i\neq j}. This can be regarded that as the algorithm progresses,pi{\displaystyle \mathbf {p} _{i}} andri{\displaystyle \mathbf {r} _{i}} span the sameKrylov subspace, whereri{\displaystyle \mathbf {r} _{i}} form the orthogonal basis with respect to the standard inner product, andpi{\displaystyle \mathbf {p} _{i}} form the orthogonal basis with respect to the inner product induced byA{\displaystyle \mathbf {A} }. Therefore,xk{\displaystyle \mathbf {x} _{k}} can be regarded as the projection ofx{\displaystyle \mathbf {x} } on the Krylov subspace.

That is, if the CG method starts withx0=0{\displaystyle \mathbf {x} _{0}=0}, then[6]xk=argminyRn{(xy)A(xy):yspan{b,Ab,,Ak1b}}{\displaystyle x_{k}=\mathrm {argmin} _{y\in \mathbb {R} ^{n}}{\left\{(x-y)^{\top }A(x-y):y\in \operatorname {span} \left\{b,Ab,\ldots ,A^{k-1}b\right\}\right\}}}The algorithm is detailed below for solvingAx=b{\displaystyle \mathbf {A} \mathbf {x} =\mathbf {b} } whereA{\displaystyle \mathbf {A} } is a real, symmetric, positive-definite matrix. The input vectorx0{\displaystyle \mathbf {x} _{0}} can be an approximate initial solution or0{\displaystyle \mathbf {0} }. It is a different formulation of the exact procedure described above.

r0:=bAx0if r0 is sufficiently small, then return x0 as the resultp0:=r0k:=0repeatαk:=rkTrkpkTApkxk+1:=xk+αkpkrk+1:=rkαkApkif rk+1 is sufficiently small, then exit loopβk:=rk+1Trk+1rkTrkpk+1:=rk+1+βkpkk:=k+1end repeatreturn xk+1 as the result{\displaystyle {\begin{aligned}&\mathbf {r} _{0}:=\mathbf {b} -\mathbf {Ax} _{0}\\&{\hbox{if }}\mathbf {r} _{0}{\text{ is sufficiently small, then return }}\mathbf {x} _{0}{\text{ as the result}}\\&\mathbf {p} _{0}:=\mathbf {r} _{0}\\&k:=0\\&{\text{repeat}}\\&\qquad \alpha _{k}:={\frac {\mathbf {r} _{k}^{\mathsf {T}}\mathbf {r} _{k}}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {Ap} _{k}}}\\&\qquad \mathbf {x} _{k+1}:=\mathbf {x} _{k}+\alpha _{k}\mathbf {p} _{k}\\&\qquad \mathbf {r} _{k+1}:=\mathbf {r} _{k}-\alpha _{k}\mathbf {Ap} _{k}\\&\qquad {\hbox{if }}\mathbf {r} _{k+1}{\text{ is sufficiently small, then exit loop}}\\&\qquad \beta _{k}:={\frac {\mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {r} _{k+1}}{\mathbf {r} _{k}^{\mathsf {T}}\mathbf {r} _{k}}}\\&\qquad \mathbf {p} _{k+1}:=\mathbf {r} _{k+1}+\beta _{k}\mathbf {p} _{k}\\&\qquad k:=k+1\\&{\text{end repeat}}\\&{\text{return }}\mathbf {x} _{k+1}{\text{ as the result}}\end{aligned}}}

This is the most commonly used algorithm. The same formula forβk{\displaystyle \beta _{k}} is also used in the Fletcher–Reevesnonlinear conjugate gradient method.

Restarts

[edit]

We note thatx1{\displaystyle \mathbf {x} _{1}} is computed by thegradient descent method applied tox0{\displaystyle \mathbf {x} _{0}}. Settingβk=0{\displaystyle \beta _{k}=0} would similarly makexk+1{\displaystyle \mathbf {x} _{k+1}} computed by thegradient descent method fromxk{\displaystyle \mathbf {x} _{k}}, i.e., can be used as a simple implementation of a restart of the conjugate gradient iterations.[4] Restarts could slow down convergence, but may improve stability if the conjugate gradient method misbehaves, e.g., due toround-off error.

Explicit residual calculation

[edit]

The formulasxk+1:=xk+αkpk{\displaystyle \mathbf {x} _{k+1}:=\mathbf {x} _{k}+\alpha _{k}\mathbf {p} _{k}} andrk:=bAxk{\displaystyle \mathbf {r} _{k}:=\mathbf {b} -\mathbf {Ax} _{k}}, which both hold in exact arithmetic, make the formulasrk+1:=rkαkApk{\displaystyle \mathbf {r} _{k+1}:=\mathbf {r} _{k}-\alpha _{k}\mathbf {Ap} _{k}} andrk+1:=bAxk+1{\displaystyle \mathbf {r} _{k+1}:=\mathbf {b} -\mathbf {Ax} _{k+1}} mathematically equivalent. The former is used in the algorithm to avoid an extra multiplication byA{\displaystyle \mathbf {A} } since the vectorApk{\displaystyle \mathbf {Ap} _{k}} is already computed to evaluateαk{\displaystyle \alpha _{k}}. The latter may be more accurate, substituting the explicit calculationrk+1:=bAxk+1{\displaystyle \mathbf {r} _{k+1}:=\mathbf {b} -\mathbf {Ax} _{k+1}} for the implicit one by the recursion subject toround-off error accumulation, and is thus recommended for an occasional evaluation.[7]

A norm of the residual is typically used for stopping criteria. The norm of the explicit residualrk+1:=bAxk+1{\displaystyle \mathbf {r} _{k+1}:=\mathbf {b} -\mathbf {Ax} _{k+1}} provides a guaranteed level of accuracy both in exact arithmetic and in the presence of therounding errors, where convergence naturally stagnates. In contrast, the implicit residualrk+1:=rkαkApk{\displaystyle \mathbf {r} _{k+1}:=\mathbf {r} _{k}-\alpha _{k}\mathbf {Ap} _{k}} is known to keep getting smaller in amplitude well below the level ofrounding errors and thus cannot be used to determine the stagnation of convergence.

Computation of alpha and beta

[edit]

In the algorithm,αk{\displaystyle \alpha _{k}} is chosen such thatrk+1{\displaystyle \mathbf {r} _{k+1}} is orthogonal tork{\displaystyle \mathbf {r} _{k}}. The denominator is simplified from

αk=rkTrkrkTApk=rkTrkpkTApk{\displaystyle \alpha _{k}={\frac {\mathbf {r} _{k}^{\mathsf {T}}\mathbf {r} _{k}}{\mathbf {r} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}}={\frac {\mathbf {r} _{k}^{\mathsf {T}}\mathbf {r} _{k}}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {Ap} _{k}}}}

sincerk+1=pk+1βkpk{\displaystyle \mathbf {r} _{k+1}=\mathbf {p} _{k+1}-\mathbf {\beta } _{k}\mathbf {p} _{k}}. Theβk{\displaystyle \beta _{k}} is chosen such thatpk+1{\displaystyle \mathbf {p} _{k+1}} is conjugate topk{\displaystyle \mathbf {p} _{k}}. Initially,βk{\displaystyle \beta _{k}} is

βk=rk+1TApkpkTApk{\displaystyle \beta _{k}=-{\frac {\mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}}}}

using

rk+1=rkαkApk{\displaystyle \mathbf {r} _{k+1}=\mathbf {r} _{k}-\alpha _{k}\mathbf {A} \mathbf {p} _{k}}

and equivalently

Apk=1αk(rkrk+1),{\displaystyle \mathbf {A} \mathbf {p} _{k}={\frac {1}{\alpha _{k}}}(\mathbf {r} _{k}-\mathbf {r} _{k+1}),}

the numerator ofβk{\displaystyle \beta _{k}} is rewritten as

rk+1TApk=1αkrk+1T(rkrk+1)=1αkrk+1Trk+1{\displaystyle \mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}={\frac {1}{\alpha _{k}}}\mathbf {r} _{k+1}^{\mathsf {T}}(\mathbf {r} _{k}-\mathbf {r} _{k+1})=-{\frac {1}{\alpha _{k}}}\mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {r} _{k+1}}

becauserk+1{\displaystyle \mathbf {r} _{k+1}} andrk{\displaystyle \mathbf {r} _{k}} are orthogonal by design. The denominator is rewritten as

pkTApk=(rk+βk1pk1)TApk=1αkrkT(rkrk+1)=1αkrkTrk{\displaystyle \mathbf {p} _{k}^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}=(\mathbf {r} _{k}+\beta _{k-1}\mathbf {p} _{k-1})^{\mathsf {T}}\mathbf {A} \mathbf {p} _{k}={\frac {1}{\alpha _{k}}}\mathbf {r} _{k}^{\mathsf {T}}(\mathbf {r} _{k}-\mathbf {r} _{k+1})={\frac {1}{\alpha _{k}}}\mathbf {r} _{k}^{\mathsf {T}}\mathbf {r} _{k}}

using that the search directionspk{\displaystyle \mathbf {p} _{k}} are conjugated and again that the residuals are orthogonal. This gives theβ{\displaystyle \beta } in the algorithm after cancellingαk{\displaystyle \alpha _{k}}.

Example code inJulia (programming language)

[edit]
"""    conjugate_gradient!(A, b, x)Return the solution to `A * x = b` using the conjugate gradient method."""functionconjugate_gradient!(A::AbstractMatrix,b::AbstractVector,x::AbstractVector;tol=eps(eltype(b)))# Initialize residual vectorresidual=b-A*x# Initialize search direction vectorsearch_direction=copy(residual)# Compute initial squared residual normnorm(x)=sqrt(sum(x.^2))old_resid_norm=norm(residual)# Iterate until convergencewhileold_resid_norm>tolA_search_direction=A*search_directionstep_size=old_resid_norm^2/(search_direction'*A_search_direction)# Update solution@.x=x+step_size*search_direction# Update residual@.residual=residual-step_size*A_search_directionnew_resid_norm=norm(residual)# Update search direction vector@.search_direction=residual+(new_resid_norm/old_resid_norm)^2*search_direction# Update squared residual norm for next iterationold_resid_norm=new_resid_normendreturnxend

Numerical example

[edit]

Consider the linear systemAx =b given by

Ax=[4113][x1x2]=[12],{\displaystyle \mathbf {A} \mathbf {x} ={\begin{bmatrix}4&1\\1&3\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}={\begin{bmatrix}1\\2\end{bmatrix}},}

we will perform two steps of the conjugate gradient method beginning with the initial guess

x0=[21]{\displaystyle \mathbf {x} _{0}={\begin{bmatrix}2\\1\end{bmatrix}}}

in order to find an approximate solution to the system.

Solution

[edit]

For reference, the exact solution is

x=[111711][0.09090.6364]{\displaystyle \mathbf {x} ={\begin{bmatrix}{\frac {1}{11}}\\\\{\frac {7}{11}}\end{bmatrix}}\approx {\begin{bmatrix}0.0909\\\\0.6364\end{bmatrix}}}

Our first step is to calculate the residual vectorr0 associated withx0. This residual is computed from the formular0 =b -Ax0, and in our case is equal to

r0=[12][4113][21]=[83]=p0.{\displaystyle \mathbf {r} _{0}={\begin{bmatrix}1\\2\end{bmatrix}}-{\begin{bmatrix}4&1\\1&3\end{bmatrix}}{\begin{bmatrix}2\\1\end{bmatrix}}={\begin{bmatrix}-8\\-3\end{bmatrix}}=\mathbf {p} _{0}.}

Since this is the first iteration, we will use the residual vectorr0 as our initial search directionp0; the method of selectingpk will change in further iterations.

We now compute the scalarα0 using the relationship

α0=r0Tr0p0TAp0=[83][83][83][4113][83]=733310.2205{\displaystyle \alpha _{0}={\frac {\mathbf {r} _{0}^{\mathsf {T}}\mathbf {r} _{0}}{\mathbf {p} _{0}^{\mathsf {T}}\mathbf {Ap} _{0}}}={\frac {{\begin{bmatrix}-8&-3\end{bmatrix}}{\begin{bmatrix}-8\\-3\end{bmatrix}}}{{\begin{bmatrix}-8&-3\end{bmatrix}}{\begin{bmatrix}4&1\\1&3\end{bmatrix}}{\begin{bmatrix}-8\\-3\end{bmatrix}}}}={\frac {73}{331}}\approx 0.2205}

We can now computex1 using the formula

x1=x0+α0p0=[21]+73331[83][0.23560.3384].{\displaystyle \mathbf {x} _{1}=\mathbf {x} _{0}+\alpha _{0}\mathbf {p} _{0}={\begin{bmatrix}2\\1\end{bmatrix}}+{\frac {73}{331}}{\begin{bmatrix}-8\\-3\end{bmatrix}}\approx {\begin{bmatrix}0.2356\\0.3384\end{bmatrix}}.}

This result completes the first iteration, the result being an "improved" approximate solution to the system,x1. We may now move on and compute the next residual vectorr1 using the formula

r1=r0α0Ap0=[83]73331[4113][83][0.28100.7492].{\displaystyle \mathbf {r} _{1}=\mathbf {r} _{0}-\alpha _{0}\mathbf {A} \mathbf {p} _{0}={\begin{bmatrix}-8\\-3\end{bmatrix}}-{\frac {73}{331}}{\begin{bmatrix}4&1\\1&3\end{bmatrix}}{\begin{bmatrix}-8\\-3\end{bmatrix}}\approx {\begin{bmatrix}-0.2810\\0.7492\end{bmatrix}}.}

Our next step in the process is to compute the scalarβ0 that will eventually be used to determine the next search directionp1.

β0=r1Tr1r0Tr0[0.28100.7492][0.28100.7492][83][83]=0.0088.{\displaystyle \beta _{0}={\frac {\mathbf {r} _{1}^{\mathsf {T}}\mathbf {r} _{1}}{\mathbf {r} _{0}^{\mathsf {T}}\mathbf {r} _{0}}}\approx {\frac {{\begin{bmatrix}-0.2810&0.7492\end{bmatrix}}{\begin{bmatrix}-0.2810\\0.7492\end{bmatrix}}}{{\begin{bmatrix}-8&-3\end{bmatrix}}{\begin{bmatrix}-8\\-3\end{bmatrix}}}}=0.0088.}

Now, using this scalarβ0, we can compute the next search directionp1 using the relationship

p1=r1+β0p0[0.28100.7492]+0.0088[83]=[0.35110.7229].{\displaystyle \mathbf {p} _{1}=\mathbf {r} _{1}+\beta _{0}\mathbf {p} _{0}\approx {\begin{bmatrix}-0.2810\\0.7492\end{bmatrix}}+0.0088{\begin{bmatrix}-8\\-3\end{bmatrix}}={\begin{bmatrix}-0.3511\\0.7229\end{bmatrix}}.}

We now compute the scalarα1 using our newly acquiredp1 using the same method as that used forα0.

α1=r1Tr1p1TAp1[0.28100.7492][0.28100.7492][0.35110.7229][4113][0.35110.7229]=0.4122.{\displaystyle \alpha _{1}={\frac {\mathbf {r} _{1}^{\mathsf {T}}\mathbf {r} _{1}}{\mathbf {p} _{1}^{\mathsf {T}}\mathbf {Ap} _{1}}}\approx {\frac {{\begin{bmatrix}-0.2810&0.7492\end{bmatrix}}{\begin{bmatrix}-0.2810\\0.7492\end{bmatrix}}}{{\begin{bmatrix}-0.3511&0.7229\end{bmatrix}}{\begin{bmatrix}4&1\\1&3\end{bmatrix}}{\begin{bmatrix}-0.3511\\0.7229\end{bmatrix}}}}=0.4122.}

Finally, we findx2 using the same method as that used to findx1.

x2=x1+α1p1[0.23560.3384]+0.4122[0.35110.7229]=[0.09090.6364].{\displaystyle \mathbf {x} _{2}=\mathbf {x} _{1}+\alpha _{1}\mathbf {p} _{1}\approx {\begin{bmatrix}0.2356\\0.3384\end{bmatrix}}+0.4122{\begin{bmatrix}-0.3511\\0.7229\end{bmatrix}}={\begin{bmatrix}0.0909\\0.6364\end{bmatrix}}.}

The result,x2, is a "better" approximation to the system's solution thanx1 andx0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached aftern = 2 iterations (n being the order of the system).

Convergence properties

[edit]

The conjugate gradient method can theoretically be viewed as a direct method, as in the absence ofround-off error it produces the exact solution after a finite number of iterations, which is not larger than the size of the matrix. In practice, the exact solution is never obtained since the conjugate gradient method is unstable with respect to even small perturbations, e.g., most directions are not in practice conjugate, due to a degenerative nature of generating the Krylov subspaces.

As aniterative method, the conjugate gradient method monotonically (in the energy norm) improves approximationsxk{\displaystyle \mathbf {x} _{k}} to the exact solution and may reach the required tolerance after a relatively small (compared to the problem size) number of iterations. The improvement is typically linear and its speed is determined by thecondition numberκ(A){\displaystyle \kappa (A)} of the system matrixA{\displaystyle A}: the largerκ(A){\displaystyle \kappa (A)} is, the slower the improvement.[8]

Ifκ(A){\displaystyle \kappa (A)} is large,preconditioning is commonly used to replace the original systemAxb=0{\displaystyle \mathbf {Ax} -\mathbf {b} =0} withM1(Axb)=0{\displaystyle \mathbf {M} ^{-1}(\mathbf {Ax} -\mathbf {b} )=0} such thatκ(M1A){\displaystyle \kappa (\mathbf {M} ^{-1}\mathbf {A} )} is smaller thanκ(A){\displaystyle \kappa (\mathbf {A} )}, see below.

Convergence theorem

[edit]

Define a subset of polynomials as

Πk:={ pΠk : p(0)=1 },{\displaystyle \Pi _{k}^{*}:=\left\lbrace \ p\in \Pi _{k}\ :\ p(0)=1\ \right\rbrace \,,}

whereΠk{\displaystyle \Pi _{k}} is the set ofpolynomials of maximal degreek{\displaystyle k}.

Let(xk)k{\displaystyle \left(\mathbf {x} _{k}\right)_{k}} be the iterative approximations of the exact solutionx{\displaystyle \mathbf {x} _{*}}, and define the errors asek:=xkx{\displaystyle \mathbf {e} _{k}:=\mathbf {x} _{k}-\mathbf {x} _{*}}.Now, the rate of convergence can be approximated as[4][9]

ekA=minpΠkp(A)e0AminpΠkmaxλσ(A)|p(λ)| e0A2(κ(A)1κ(A)+1)k e0A2exp(2kκ(A)) e0A,{\displaystyle {\begin{aligned}\left\|\mathbf {e} _{k}\right\|_{\mathbf {A} }&=\min _{p\in \Pi _{k}^{*}}\left\|p(\mathbf {A} )\mathbf {e} _{0}\right\|_{\mathbf {A} }\\&\leq \min _{p\in \Pi _{k}^{*}}\,\max _{\lambda \in \sigma (\mathbf {A} )}|p(\lambda )|\ \left\|\mathbf {e} _{0}\right\|_{\mathbf {A} }\\&\leq 2\left({\frac {{\sqrt {\kappa (\mathbf {A} )}}-1}{{\sqrt {\kappa (\mathbf {A} )}}+1}}\right)^{k}\ \left\|\mathbf {e} _{0}\right\|_{\mathbf {A} }\\&\leq 2\exp \left({\frac {-2k}{\sqrt {\kappa (\mathbf {A} )}}}\right)\ \left\|\mathbf {e} _{0}\right\|_{\mathbf {A} }\,,\end{aligned}}}

whereσ(A){\displaystyle \sigma (\mathbf {A} )} denotes thespectrum, andκ(A){\displaystyle \kappa (\mathbf {A} )} denotes thecondition number.

This showsk=12κ(A)log(e0Aε1){\displaystyle k={\tfrac {1}{2}}{\sqrt {\kappa (\mathbf {A} )}}\log \left(\left\|\mathbf {e} _{0}\right\|_{\mathbf {A} }\varepsilon ^{-1}\right)} iterations suffices to reduce the error to2ε{\displaystyle 2\varepsilon } for anyε>0{\displaystyle \varepsilon >0}.

Note, the important limit whenκ(A){\displaystyle \kappa (\mathbf {A} )} tends to{\displaystyle \infty }

κ(A)1κ(A)+112κ(A)forκ(A)1.{\displaystyle {\frac {{\sqrt {\kappa (\mathbf {A} )}}-1}{{\sqrt {\kappa (\mathbf {A} )}}+1}}\approx 1-{\frac {2}{\sqrt {\kappa (\mathbf {A} )}}}\quad {\text{for}}\quad \kappa (\mathbf {A} )\gg 1\,.}

This limit shows a faster convergence rate compared to the iterative methods ofJacobi orGauss–Seidel which scale as12κ(A){\displaystyle \approx 1-{\frac {2}{\kappa (\mathbf {A} )}}}.

Noround-off error is assumed in the convergence theorem, but the convergence bound is commonly valid in practice as theoretically explained[5] byAnne Greenbaum.

Practical convergence

[edit]

If initialized randomly, the first stage of iterations is often the fastest, as the error is eliminated within the Krylov subspace that initially reflects a smaller effective condition number. The second stage of convergence is typically well defined by the theoretical convergence bound withκ(A){\textstyle {\sqrt {\kappa (\mathbf {A} )}}}, but may be super-linear, depending on a distribution of the spectrum of the matrixA{\displaystyle A} and the spectral distribution of the error.[5] In the last stage, the smallest attainable accuracy is reached and the convergence stalls or the method may even start diverging. In typical scientific computing applications indouble-precision floating-point format for matrices of large sizes, the conjugate gradient method uses a stopping criterion with a tolerance that terminates the iterations during the first or second stage.

The preconditioned conjugate gradient method

[edit]
See also:Preconditioner

In most cases,preconditioning is necessary to ensure fast convergence of the conjugate gradient method. IfM1{\displaystyle \mathbf {M} ^{-1}} is symmetric positive-definite andM1A{\displaystyle \mathbf {M} ^{-1}\mathbf {A} } has a better condition number thanA,{\displaystyle \mathbf {A} ,} a preconditioned conjugate gradient method can be used. It takes the following form:[10]

r0:=bAx0{\displaystyle \mathbf {r} _{0}:=\mathbf {b} -\mathbf {Ax} _{0}}
Solve:Mz0:=r0{\displaystyle {\textrm {Solve:}}\mathbf {M} \mathbf {z} _{0}:=\mathbf {r} _{0}}
p0:=z0{\displaystyle \mathbf {p} _{0}:=\mathbf {z} _{0}}
k:=0{\displaystyle k:=0\,}
repeat
αk:=rkTzkpkTApk{\displaystyle \alpha _{k}:={\frac {\mathbf {r} _{k}^{\mathsf {T}}\mathbf {z} _{k}}{\mathbf {p} _{k}^{\mathsf {T}}\mathbf {Ap} _{k}}}}
xk+1:=xk+αkpk{\displaystyle \mathbf {x} _{k+1}:=\mathbf {x} _{k}+\alpha _{k}\mathbf {p} _{k}}
rk+1:=rkαkApk{\displaystyle \mathbf {r} _{k+1}:=\mathbf {r} _{k}-\alpha _{k}\mathbf {Ap} _{k}}
ifrk+1 is sufficiently smallthen exit loopend if
Solve Mzk+1:=rk+1{\displaystyle \mathrm {Solve} \ \mathbf {M} \mathbf {z} _{k+1}:=\mathbf {r} _{k+1}}
βk:=rk+1Tzk+1rkTzk{\displaystyle \beta _{k}:={\frac {\mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {z} _{k+1}}{\mathbf {r} _{k}^{\mathsf {T}}\mathbf {z} _{k}}}}
pk+1:=zk+1+βkpk{\displaystyle \mathbf {p} _{k+1}:=\mathbf {z} _{k+1}+\beta _{k}\mathbf {p} _{k}}
k:=k+1{\displaystyle k:=k+1\,}
end repeat
The result isxk+1

The above formulation is equivalent to applying the regular conjugate gradient method to the preconditioned system[11]

E1A(E1)Tx^=E1b{\displaystyle \mathbf {E} ^{-1}\mathbf {A} (\mathbf {E} ^{-1})^{\mathsf {T}}\mathbf {\hat {x}} =\mathbf {E} ^{-1}\mathbf {b} }

where

EET=M,x^=ETx.{\displaystyle \mathbf {EE} ^{\mathsf {T}}=\mathbf {M} ,\qquad \mathbf {\hat {x}} =\mathbf {E} ^{\mathsf {T}}\mathbf {x} .}

The Cholesky decomposition of the preconditioner must be used to keep the symmetry (and positive definiteness) of the system. However, this decomposition does not need to be computed, and it is sufficient to knowM1{\displaystyle \mathbf {M} ^{-1}}. It can be shown thatE1A(E1)T{\displaystyle \mathbf {E} ^{-1}\mathbf {A} (\mathbf {E} ^{-1})^{\mathsf {T}}} has the same spectrum asM1A{\displaystyle \mathbf {M} ^{-1}\mathbf {A} }.

The preconditioner matrixM has to be symmetric positive-definite and fixed, i.e., cannot change from iteration to iteration. If any of these assumptions on the preconditioner is violated, the behavior of the preconditioned conjugate gradient method may become unpredictable.

An example of a commonly usedpreconditioner is theincomplete Cholesky factorization.[12]

Using the preconditioner in practice

[edit]

It is important to keep in mind that we don't want to invert the matrixM{\displaystyle \mathbf {M} } explicitly in order to getM1{\displaystyle \mathbf {M} ^{-1}} for use it in the process, since invertingM{\displaystyle \mathbf {M} } would take more time/computational resources than solving the conjugate gradient algorithm itself. As an example, let's say that we are using a preconditioner coming from incomplete Cholesky factorization. The resulting matrix is the lower triangular matrixL{\displaystyle \mathbf {L} }, and the preconditioner matrix is:

M=LLT{\displaystyle \mathbf {M} =\mathbf {LL} ^{\mathsf {T}}}

Then we have to solve:

Mz=r{\displaystyle \mathbf {Mz} =\mathbf {r} }

z=M1r{\displaystyle \mathbf {z} =\mathbf {M} ^{-1}\mathbf {r} }

But:

M1=(L1)TL1{\displaystyle \mathbf {M} ^{-1}=(\mathbf {L} ^{-1})^{\mathsf {T}}\mathbf {L} ^{-1}}

Then:

z=(L1)TL1r{\displaystyle \mathbf {z} =(\mathbf {L} ^{-1})^{\mathsf {T}}\mathbf {L} ^{-1}\mathbf {r} }

Let's take an intermediary vectora{\displaystyle \mathbf {a} }:

a=L1r{\displaystyle \mathbf {a} =\mathbf {L} ^{-1}\mathbf {r} }

r=La{\displaystyle \mathbf {r} =\mathbf {L} \mathbf {a} }

Sincer{\displaystyle \mathbf {r} } andL{\displaystyle \mathbf {L} } and known, andL{\displaystyle \mathbf {L} } is lower triangular, solving fora{\displaystyle \mathbf {a} } is easy and computationally cheap by usingforward substitution. Then, we substitutea{\displaystyle \mathbf {a} } in the original equation:

z=(L1)Ta{\displaystyle \mathbf {z} =(\mathbf {L} ^{-1})^{\mathsf {T}}\mathbf {a} }

a=LTz{\displaystyle \mathbf {a} =\mathbf {L} ^{\mathsf {T}}\mathbf {z} }

Sincea{\displaystyle \mathbf {a} } andLT{\displaystyle \mathbf {L} ^{\mathsf {T}}} are known, andLT{\displaystyle \mathbf {L} ^{\mathsf {T}}} is upper triangular, solving forz{\displaystyle \mathbf {z} } is easy and computationally cheap by usingbackward substitution.

Using this method, there is no need to invertM{\displaystyle \mathbf {M} } orL{\displaystyle \mathbf {L} } explicitly at all, and we still obtainz{\displaystyle \mathbf {z} }.

The flexible preconditioned conjugate gradient method

[edit]

In numerically challenging applications, sophisticated preconditioners are used, which may lead to variable preconditioning, changing between iterations. Even if the preconditioner is symmetric positive-definite on every iteration, the fact that it may change makes the arguments above invalid, and in practical tests leads to a significant slow down of the convergence of the algorithm presented above. Using thePolak–Ribière formula

βk:=rk+1T(zk+1zk)rkTzk{\displaystyle \beta _{k}:={\frac {\mathbf {r} _{k+1}^{\mathsf {T}}\left(\mathbf {z} _{k+1}-\mathbf {z} _{k}\right)}{\mathbf {r} _{k}^{\mathsf {T}}\mathbf {z} _{k}}}}

instead of theFletcher–Reeves formula

βk:=rk+1Tzk+1rkTzk{\displaystyle \beta _{k}:={\frac {\mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {z} _{k+1}}{\mathbf {r} _{k}^{\mathsf {T}}\mathbf {z} _{k}}}}

may dramatically improve the convergence in this case.[13] This version of the preconditioned conjugate gradient method can be called[14]flexible, as it allows for variable preconditioning. The flexible version is also shown[15] to be robust even if the preconditioner is not symmetric positive definite (SPD).

The implementation of the flexible version requires storing an extra vector. For a fixed SPD preconditioner,rk+1Tzk=0,{\displaystyle \mathbf {r} _{k+1}^{\mathsf {T}}\mathbf {z} _{k}=0,} so both formulas forβk are equivalent in exact arithmetic, i.e., without theround-off error.

The mathematical explanation of the better convergence behavior of the method with thePolak–Ribière formula is that the method islocally optimal in this case, in particular, it does not converge slower than the locally optimal steepest descent method.[16]

Vs. the locally optimal steepest descent method

[edit]

In both the original and the preconditioned conjugate gradient methods one only needs to setβk:=0{\displaystyle \beta _{k}:=0} in order to make them locally optimal, using theline search,steepest descent methods. With this substitution, vectorsp are always the same as vectorsz, so there is no need to store vectorsp. Thus, every iteration of thesesteepest descent methods is a bit cheaper compared to that for the conjugate gradient methods. However, the latter converge faster, unless a (highly) variable and/or non-SPDpreconditioner is used, see above.

Conjugate gradient method as optimal feedback controller for double integrator

[edit]

The conjugate gradient method can also be derived usingoptimal control theory.[17] In this approach, the conjugate gradient method falls out as anoptimal feedback controller,u=k(x,v):=γaf(x)γbv{\displaystyle u=k(x,v):=-\gamma _{a}\nabla f(x)-\gamma _{b}v} for thedouble integrator system,x˙=v,v˙=u{\displaystyle {\dot {x}}=v,\quad {\dot {v}}=u} The quantitiesγa{\displaystyle \gamma _{a}} andγb{\displaystyle \gamma _{b}} are variable feedback gains.[17]

Conjugate gradient on the normal equations

[edit]

The conjugate gradient method can be applied to an arbitraryn-by-m matrix by applying it tonormal equationsATA and right-hand side vectorATb, sinceATA is a symmetricpositive-semidefinite matrix for anyA. The result isconjugate gradient on the normal equations (CGN orCGNR).

ATAx =ATb

As an iterative method, it is not necessary to formATA explicitly in memory but only to perform the matrix–vector and transpose matrix–vector multiplications. Therefore, CGNR is particularly useful whenA is asparse matrix since these operations are usually extremely efficient. However the downside of forming the normal equations is that thecondition number κ(ATA) is equal to κ2(A) and so the rate of convergence of CGNR may be slow and the quality of the approximate solution may be sensitive to roundoff errors. Finding a goodpreconditioner is often an important part of using the CGNR method.

Several algorithms have been proposed (e.g., CGLS, LSQR). TheLSQR algorithm purportedly has the best numerical stability whenA is ill-conditioned, i.e.,A has a largecondition number.

Conjugate gradient method for complex Hermitian matrices

[edit]

The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equationsAx=b{\displaystyle \mathbf {A} \mathbf {x} =\mathbf {b} } for the complex-valued vector x, where A isHermitian (i.e., A' = A) andpositive-definite matrix, and the symbol ' denotes theconjugate transpose. The trivial modification is simply substituting theconjugate transpose for the realtranspose everywhere.

Advantages and disadvantages

[edit]

The advantages and disadvantages of the conjugate gradient methods are summarized in the lecture notes by Nemirovsky and BenTal.[18]: Sec.7.3 

A pathological example

[edit]

This example is from[19]Lett(0,1){\textstyle t\in (0,1)}, and defineW=[ttt1+ttt1+ttttt1+t],b=[100]{\displaystyle W={\begin{bmatrix}t&{\sqrt {t}}&&&&\\{\sqrt {t}}&1+t&{\sqrt {t}}&&&\\&{\sqrt {t}}&1+t&{\sqrt {t}}&&\\&&{\sqrt {t}}&\ddots &\ddots &\\&&&\ddots &&\\&&&&&{\sqrt {t}}\\&&&&{\sqrt {t}}&1+t\end{bmatrix}},\quad b={\begin{bmatrix}1\\0\\\vdots \\0\end{bmatrix}}}SinceW{\displaystyle W} is invertible, there exists a unique solution toWx=b{\textstyle Wx=b}. Solving it by conjugate gradient descent gives us rather bad convergence:bWxk2=(1/t)k,bWxn2=0{\displaystyle \|b-Wx_{k}\|^{2}=(1/t)^{k},\quad \|b-Wx_{n}\|^{2}=0}In words, during the CG process, the error grows exponentially, until it suddenly becomes zero as the unique solution is found.

See also

[edit]

References

[edit]
  1. ^Hestenes, Magnus R.;Stiefel, Eduard (December 1952)."Methods of Conjugate Gradients for Solving Linear Systems"(PDF).Journal of Research of the National Bureau of Standards.49 (6): 409.doi:10.6028/jres.049.044.
  2. ^Straeter, T. A. (1971).On the Extension of the Davidon–Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal Control Problems (PhD thesis). North Carolina State University.hdl:2060/19710026200 – via NASA Technical Reports Server.
  3. ^Speiser, Ambros (2004). "Konrad Zuse und die ERMETH: Ein weltweiter Architektur-Vergleich" [Konrad Zuse and the ERMETH: A worldwide comparison of architectures]. In Hellige, Hans Dieter (ed.).Geschichten der Informatik. Visionen, Paradigmen, Leitmotive (in German). Berlin: Springer. p. 185.ISBN 3-540-00217-0.
  4. ^abcdPolyak, Boris (1987).Introduction to Optimization.
  5. ^abcGreenbaum, Anne (1997).Iterative Methods for Solving Linear Systems.doi:10.1137/1.9781611970937.ISBN 978-0-89871-396-1.
  6. ^Paquette, Elliot; Trogdon, Thomas (March 2023)."Universality for the Conjugate Gradient and MINRES Algorithms on Sample Covariance Matrices".Communications on Pure and Applied Mathematics.76 (5):1085–1136.arXiv:2007.00640.doi:10.1002/cpa.22081.ISSN 0010-3640.
  7. ^Shewchuk, Jonathan R (1994).An Introduction to the Conjugate Gradient Method Without the Agonizing Pain(PDF).
  8. ^Saad, Yousef (2003).Iterative methods for sparse linear systems (2nd ed.). Philadelphia, Pa.: Society for Industrial and Applied Mathematics. pp. 195.ISBN 978-0-89871-534-7.
  9. ^Hackbusch, W. (2016-06-21).Iterative solution of large sparse systems of equations (2nd ed.). Switzerland: Springer.ISBN 978-3-319-28483-5.OCLC 952572240.
  10. ^Barrett, Richard; Berry, Michael; Chan, Tony F.; Demmel, James; Donato, June; Dongarra, Jack; Eijkhout, Victor; Pozo, Roldan; Romine, Charles; van der Vorst, Henk.Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods(PDF) (2nd ed.). Philadelphia, PA: SIAM. p. 13. Retrieved2020-03-31.
  11. ^Golub, Gene H.; Van Loan, Charles F. (2013).Matrix Computations (4th ed.). Johns Hopkins University Press. sec. 11.5.2.ISBN 978-1-4214-0794-4.
  12. ^Concus, P.; Golub, G. H.; Meurant, G. (1985)."Block Preconditioning for the Conjugate Gradient Method".SIAM Journal on Scientific and Statistical Computing.6 (1):220–252.doi:10.1137/0906018.
  13. ^Golub, Gene H.; Ye, Qiang (1999). "Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration".SIAM Journal on Scientific Computing.21 (4): 1305.CiteSeerX 10.1.1.56.1755.doi:10.1137/S1064827597323415.
  14. ^Notay, Yvan (2000). "Flexible Conjugate Gradients".SIAM Journal on Scientific Computing.22 (4):1444–1460.CiteSeerX 10.1.1.35.7473.doi:10.1137/S1064827599362314.
  15. ^Bouwmeester, Henricus; Dougherty, Andrew; Knyazev, Andrew V. (2015)."Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods 1".Procedia Computer Science.51:276–285.arXiv:1212.6680.doi:10.1016/j.procs.2015.05.241.S2CID 51978658.
  16. ^Knyazev, Andrew V.; Lashuk, Ilya (2008). "Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning".SIAM Journal on Matrix Analysis and Applications.29 (4): 1267.arXiv:math/0605767.doi:10.1137/060675290.S2CID 17614913.
  17. ^abRoss, I. M., "An Optimal Control Theory for Accelerated Optimization,"arXiv:1902.09004, 2019.
  18. ^Nemirovsky and Ben-Tal (2023)."Optimization III: Convex Optimization"(PDF).
  19. ^Pennington, Fabian Pedregosa, Courtney Paquette, Tom Trogdon, Jeffrey."Random Matrix Theory and Machine Learning Tutorial".random-matrix-learning.github.io. Retrieved2023-12-05.{{cite web}}: CS1 maint: multiple names: authors list (link)

Further reading

[edit]

External links

[edit]
Key concepts
Problems
Hardware
Software
Concepts
Applications
Implementations
Audio–visual
Text
Decisional
People
Architectures
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Conjugate_gradient_method&oldid=1282478411"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp