Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Durvillaea antarctica

From Wikipedia, the free encyclopedia
(Redirected fromCochayuyo)
Species of seaweed

Durvillaea antarctica
Durvillea antarctica. Washed up onSandfly Bay,Otago, New Zealand
Scientific classificationEdit this classification
Domain:Eukaryota
Clade:Diaphoretickes
Clade:Sar
Clade:Stramenopiles
Phylum:Gyrista
Subphylum:Ochrophytina
Class:Phaeophyceae
Order:Fucales
Family:Durvillaeaceae
Genus:Durvillaea
Species:
D. antarctica
Binomial name
Durvillaea antarctica
(Chamisso) Hariot

Durvillaea antarctica, also known ascochayuyo andrimurapa,[1] is a large, robust species ofsouthern bull kelp found on the coasts ofChile, southernNew Zealand, andMacquarie Island.[2][3][4][5]D. antarctica, analga, does not have air bladders, but floats due to a unique honeycomb structure within the alga's blades, which also helps thekelp avoid being damaged by the strong waves.[6][7]

Taxonomy

[edit]
D. antarctica inOtago, New Zealand

The species was first described in 1822,[8] asFucus antarcticus, and revised in 1892 asDurvillaea antarctica.[9] The genus nameDurvillaea was given in memory of the French explorerJules Dumont d'Urville, while theLatin derived epithet refers toantarctic.[10]

In 2012, a taxonomic revision led to the recognition of a new species,Durvillaea poha, based on genetic, morphological and ecological evidence,[3] which was previously recognised as the 'cape' lineage ofDurvillaea antarctica.[3][11][12]D. poha is the only other species in the genus to share the honeycombed structure and buoyancy ofD. antarctica.D. poha occurs only in southern New Zealand and on subantarctic islands (includingSnares andAuckland Islands), whereasD. antarctica has a wider distribution, and is found around New Zealand, Chile and other subantarctic islands. In southern New Zealand,D. poha andD. antarctica can be found growing together, althoughD. poha normally grows higher up or further back on the rock platforms, or in more sheltered bays, where wave force is weaker.D. poha generally has wider fronds thanD. antarctica, and can appear more 'orange' across the frond area.[3][5] Mitochondrialintrogression has been observed between the two species, where some plants in Wellington exhibited the nuclear DNA ofD. poha but also mitochondrial DNA belonging toD. antarctica.[13]

Further diversity, with additional unclassified lineages have been identified within the species.[5][12]

Cladogram ofDurvillaea showing diversity withinD. antarctica[5]

D. chathamensis

D. antarctica (New Zealand north)

D. antarctica (New Zealand south)

D. antarctica (Subantarctic and Chile)


Description

[edit]
D. antarctica at Manurewa Point, in theWairarapa

The blades ofDurvillaea antarctica are green to golden brown with a leathery texture. The honeycomb structure of the blade gives strength and buoyancy.[6][7] This novel structure is thought to be responsible for the wide distribution of this genus, as the kelp is able to float when its holdfast fails. It can colonise other coastlines in this manner, and has been shown to carry communities of invertebrates across vast ocean distances from one shore to another.[14] Specimens ofD. antarctica have been found to float for up to 210 days, during which time high wind speeds transport kelp rafts up to 10,000 km.[15] Environmental factors such as temperature, solar radiation and surface winds (all of which vary with latitude) affect buoyancy of rafts and their rate of travel.[15] Rafts ofD. antarctica are more likely to disperse offshore if plants detach during outgoing tides during autumn and winter.[16] It is thought that this 'rafting' withDurvillaea antarctica and other floating seaweeds allowed a wide range of species to recolonise sub-Antarctic shores scoured clean by ice during the last Ice Age.[17]

The holdfast ofD. antarctica is large and is very difficult to remove.D. antarctica has to resist forces equivalent to 1100 km/h on land.[18][clarification needed] The holdfast failing is usually the result of worms and molluscs which feed on the tissue because of the sheltered habitat it creates.[19] It is also common for its host rock to be broken off without the holdfast losing its grip, with this contributing significantly to erosion in some areas.[2] Recruitment rates of this species is very low, therefore the ecological impact of harvesting this species is too great.[19]

Morphology ofD. antarctica
  • Cross-section revealing the honeycomb structure of blades
    Cross-section revealing the honeycomb structure of blades
  • Another cross-section
    Another cross-section
  • The long, narrow and dark blades of D. antarctica
    The long, narrow and dark blades ofD. antarctica
  • Illustration of D. harveyi, now D. antarctica, by Walter Hood Fitch for J. D. Hooker's Flora Antarctica, 1843–1859
    Illustration ofD. harveyi, nowD. antarctica, byWalter Hood Fitch forJ. D. Hooker'sFlora Antarctica, 1843–1859

Life cycle

[edit]

Durvillaea antarctica reproduces sexually by producing egg and sperm that are released into the water. Eggs and sperm are produced on specific sites of the frond. A large individual can produce 100 million eggs in twelve hours.[19] The season when reproduction occurs varies with location, but is generally during winter months.[20] Eggs are small and disperse over short distances, and they generally require calm or moderate wave action in order to settle and successfully attach to substrates.[21]

Distribution

[edit]
D. antarctica growing inCooper Bay,South Georgia

Durvillaea antarctica has a circumpolar distribution between the latitudes of 29°S and 55°S, found in Chile, southern New Zealand, and Macquarie Island.[2][3][4][5][22][23][24] The type locality is Cape Horn, Chile.[6][20]

It is found on exposed shores, especially in the northern parts of its range, and attaches itself with a strong holdfast.[2][3]

Epifauna, parasites and rafting

[edit]
See also:Durvillaea
BeachcastD. antarctica kelp frond with blisters caused by an infection

Holdfasts ofD. antarctica are often inhabited by a diverse array ofepifaunal invertebrates, many of which burrow into and graze on the kelp.[25] In New Zealand, epifaunal species include thecrustaceansParawaldeckia kidderi,P. karaka[25] andLimnoria stephenseni, and themolluscsCantharidus roseus,Onchidella marginata,[26]Onithochiton neglectus,[25] andSypharochiton sinclairi.[27][28][29] The intertidal spiderDesis marina also inhabits the holdfasts ofD. antarctica.[30][31]

Plants ofD. antarctica can detach from substrates, particularly during storms. The kelp floats as a raft and can travel vast distances at sea, driven by ocean currents. Kelp-associated invertebrates can be transported inside of drifting holdfasts, potentially leading to long-distance dispersal and a significant impact upon the population genetic structure of those species.[26][27][28][29]

Fronds ofD. antarctica can be infected by an endophytic, phaeophycean algal parasiteHerpodiscus durvillaeae(Lindauer) G. R. South.[32][33] Fronds can also be infectedMaullinia, a genus of intracellular,protistan parasites.[34][35][36] Based on genetic evidence, bothH. durvillaeae andMaullinia have likely been dispersed across the Southern Hemisphere via rafting bull kelp.[33][34][36][37]

Human use

[edit]
Apōhā covered withtōtara bark and inserted into aflax basket

Chilean culture

[edit]

Use in cuisine

[edit]

Stems and holdfasts ofD. antarctica andD. incurvata are harvested from the coast of Chile and is used inChilean cuisine for various recipes, includingsalads andstews.[5] InQuechua the species is called:cochayuyo (cocha: lake, andyuyo: weed), andhulte.[5] TheMapuche indigenous people refer to it ascollofe orkollof.[5][38]

Expression

[edit]

The expressionremojar el cochayuyo (literally: to soak the cochayuyo) is used inChilean Spanish to refer tosexual intercourse.[39] The expression derives from the fact that harvestedD. antarctica is preserved by being sun-dried and then softened by soaking in a dish of water.

Cochayuyo cuisine
  • Cochayuyo salad
    Cochayuyo salad

Māori culture

[edit]

Along withD. poha, blades ofD. antarctica are used to make traditionalpōhā bags, which are used to carry and store food and fresh water, to propagate liveshellfish, and to make clothing and equipment for sports.[40][41][42] Pōhā are especially associated withNgāi Tahu and are often used to carry and storemuttonbird (tītī) chicks.[40][41] The species is calledrimurapa inMāori.[1][40][41]

References

[edit]
  1. ^ab"rimurapa".māoridictionary.co.nz. Retrieved21 November 2019.
  2. ^abcdSmith, J.M.B. and Bayliss-Smith, T.P. (1998). Kelp-plucking: coastal erosion facilitated by bull-kelpDurvillaea antarctica at subantarctic Macquarie Island,Antarctic Science 10 (4), 431–438.doi:10.1017/S0954102098000522.
  3. ^abcdefFraser, Ceridwen I.; Spencer, Hamish G.; Waters, Jonathan M. (2012). "Durvillaea poha sp. nov. (Fucales, Phaeophyceae): a buoyant southern bull-kelp species endemic to New Zealand".Phycologia.51 (2):151–156.Bibcode:2012Phyco..51..151F.doi:10.2216/11-47.1.S2CID 86386681.
  4. ^abParvizi, Elahe; Craw, Dave; Waters, Jonathan M. (2019). "Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand".Earth and Planetary Science Letters.520:18–25.Bibcode:2019E&PSL.520...18P.doi:10.1016/j.epsl.2019.05.034.S2CID 189974346.
  5. ^abcdefghFraser, Ceridwen I.; Velásquez, Marcel; Nelson, Wendy A.; Macaya, Erasmo C.A.; Hay, Cameron (2019)."The biogeographic importance of buoyancy in macroalgae: a case study of the southern bull-kelp genusDurvillaea (Phaeophyceae), including descriptions of two new species".Journal of Phycology.56 (1):23–36.doi:10.1111/jpy.12939.PMID 31642057.
  6. ^abcW. A., Nelson (2013).New Zealand seaweeds : an illustrated guide. Wellington, New Zealand: Te Papa Press. p. 66.ISBN 9780987668813.OCLC 841897290.
  7. ^abMaggy Wassilieff.Seaweed - Bull kelp’s honeycombed structure,Te Ara - the Encyclopedia of New Zealand, Ministry of Culture and Heritage. Updated 2 March 2009. Retrieved 9 March 2010.
  8. ^Choris, L. (1822). Voyage pittoresque autour du monde. Part I. pp. vi + 17, 12 plates. Paris
  9. ^Hariot, P. (1892). Complément à la flore algologique de la Terre de Feu. Notarisia 7: 1427-1435.
  10. ^Guiry, M.D.; Guiry, G.M."Durvillaea antarctica".AlgaeBase.University of Galway.
  11. ^Fraser, Ceridwen I.; Hay, Cameron H.; Spencer, Hamish G.; Waters, Jonathan M. (2009). "Genetic and morphological analyses of the southern bull kelpDurvillaea antarctica (Phaeophyceae: Durvillaeales) in New Zealand reveal cryptic species".Journal of Phycology.45 (2):436–443.Bibcode:2009JPcgy..45..436F.doi:10.1111/j.1529-8817.2009.00658.x.PMID 27033822.S2CID 18309093.
  12. ^abFraser, C.I.; Winter, D.J.; Spencer, H.G.; Waters, J.M. (2010). "Multigene phylogeny of the southern bull-kelp genusDurvillaea (Phaeophyceae: Fucales)".Molecular Phylogenetics and Evolution.57 (3):1301–11.Bibcode:2010MolPE..57.1301F.doi:10.1016/j.ympev.2010.10.011.PMID 20971197.
  13. ^Vaux, Felix; Craw, Dave; Fraser, Ceridwen I.; Waters, Jonathan M. (2021)."Northward range extension forDurvillaea poha bull kelp: Response to tectonic disturbance?".Journal of Phycology.57 (5):1411–1418.Bibcode:2021JPcgy..57.1411V.doi:10.1111/jpy.13179.PMID 33942304.
  14. ^Fraser CI, Nikula R & Waters JM (2011) Oceanic rafting of a coastal community.Proceedings of the Royal Society, B, 278:649-655.
  15. ^abTala, Fadia; López, Boris A.; Velásquez, Marcel; Jeldres, Ricardo; Macaya, Erasmo C.; Mansilla, Andrés; Ojeda, Jaime; Thiel, Martin (2019). "Long-term persistence of the floating bull kelpDurvillaea antarctica from the South-East Pacific: Potential contribution to local and transoceanic connectivity".Marine Environmental Research.149:67–79.Bibcode:2019MarER.149...67T.doi:10.1016/j.marenvres.2019.05.013.PMID 31154063.S2CID 173993590.
  16. ^Hawes, Nicola A.; Taylor, David I.; Schiel, David R. (2019). "Transport of drifting fucoid algae: Nearshore transport and potential for long distance dispersal".Journal of Experimental Marine Biology and Ecology.490:634–41.doi:10.1016/j.jembe.2017.02.001.
  17. ^Fraser CI, Nikula R, Spencer HG & Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum.Proceedings of the National Academy of Sciences, USA, 106:3249-3253.
  18. ^Hurd, C (2003).The Living Reef. Nelson, New Zealand: Craig Potton Publishing.
  19. ^abcBradstock, M (1989).Between the Tides. New Zealand: David Bateman Limited.
  20. ^abVaux, Felix; Parvizi, Elahe; Duffy, Grant A.; Dutoit, Ludovic; Craw, Dave; Waters, Jonathan M.; Fraser, Ceridwen I. (2024)."First genomic snapshots of recolonising lineages following a devastating earthquake".Ecography: e07117.doi:10.1111/ecog.07117.
  21. ^Taylor, David; Delaux, Sebastien; Stevens, Craig; Nokes, Roger; Schiel, David (2009). "Settlement rates of macroalgal algal propagules: Cross-species comparisons in a turbulent environment".Limnology and Oceanography.55 (1):66–76.doi:10.4319/lo.2010.55.1.0066.
  22. ^Parvizi, Elahe; Fraser, Ceridwen I.; Dutoit, Ludovic; Craw, Dave; Waters, Jonathan M. (2020)."The genomic footprint of coastal earthquake uplift".Proceedings of the Royal Society B.287 (1930): 20200712.doi:10.1098/rspb.2020.0712.PMC 7423469.PMID 32635859.
  23. ^Vaux, Felix; Parvizi, Elahe; Craw, Dave; Fraser, Ceridwen I.; Waters, Jonathan M. (2022)."Parallel recolonisations generate distinct genomic sectors in kelp following high magnitude earthquake disturbance?".Molecular Ecology.31 (18):4818–4831.Bibcode:2022MolEc..31.4818V.doi:10.1111/mec.16535.PMC 9540901.PMID 35582778.
  24. ^Vaux, Felix; Fraser, Ceridwen I.; Craw, Dave; Read, Stephen; Waters, Jonathan M. (2023)."Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts".Journal of the Royal Society Interface.20 (202).doi:10.1098/rsif.2023.0105.PMC 10189309.PMID 37194268.
  25. ^abcParvizi, Elahe; Dutoit, Ludovic; Fraser, Ceridwen I.; Craw, Dave; Waters, Jonathan M. (2022). "Concordant phylogeographic responses to large-scale coastal disturbance in intertidal macroalgae and their epibiota".Molecular Ecology.31 (2):646–657.Bibcode:2022MolEc..31..646P.doi:10.1111/mec.16245.PMID 34695264.S2CID 239888553.
  26. ^abCumming, Rebecca A.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M. (2014). "Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting?".Journal of Biogeography.41 (12):2357–2370.Bibcode:2014JBiog..41.2357C.doi:10.1111/jbi.12376.S2CID 84574097.
  27. ^abNikula, Raisa; Fraser, Ceridwen I.; Spencer, Hamish G.; Waters, Jonathan M. (2010)."Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans".Marine Ecology Progress Series.405:221–230.Bibcode:2010MEPS..405..221N.doi:10.3354/meps08523.
  28. ^abNikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M. (2013)."Passive rafting is a powerful driver of transoceanic gene flow".Biology Letters.9 (1): 20120821.doi:10.1098/rsbl.2012.0821.PMC 3565489.PMID 23134782.
  29. ^abWaters, Jonathan M.; King, Tania M.; Fraser, Ceridwen I.; Craw, Dave (2018)."An integrated ecological, genetic and geological assessment of long-distance dispersal by invertebrates on kelp rafts".Frontiers of Biogeography.10 (3/4): e40888.doi:10.21425/F5FBG40888.
  30. ^McLay, C. L.; Hayward, T. L. (1987-01-01)."Population structure and use ofDurvillaea antarctica holdfasts by the intertidal spiderDesis marina (Araneae: Desidae)".New Zealand Journal of Zoology.14 (1):29–42.doi:10.1080/03014223.1987.10422679.ISSN 0301-4223.
  31. ^Vink, C., McQuillan, B., Simpson, A., & Correa-Garhwal, S. (2017). The marine spider,Desis marina (Araneae: Desidae): new observations and localities.The Weta, 51, 71-79. Retrieved fromhttp://publications.ento.org.nz/index.php/weta/article/view/167Archived 2019-12-20 at theWayback Machine
  32. ^Heesch, Svenja; Peters, Akira F.; Broom, Judy E.; Hurd, Catriona L. (2008)."Affiliation of the parasiteHerpodiscus durvillaeae (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations".European Journal of Phycology.43 (3):283–295.Bibcode:2008EJPhy..43..283H.doi:10.1080/09670260801911157.
  33. ^abFraser, Ceridwen I.; Waters, Jonathan M. (2013). "Algal parasiteHerpodiscus durvillaea (Phaeophyceae: Sphacelariales) inferred to have traversed the Pacific Ocean with its buoyant host".Journal of Phycology.49 (1):202–206.Bibcode:2013JPcgy..49..202F.doi:10.1111/jpy.12017.PMID 27008401.S2CID 21397549.
  34. ^abBlake, Callum; Thiel, Martin; López, Boris A.; Fraser, Ceridwen I. (2017)."Gall-forming protistan parasites infect southern bull kelp across the Southern Ocean, with prevalence increasing to the south".Marine Ecology Progress Series.583:95–106.Bibcode:2017MEPS..583...95B.doi:10.3354/meps12346.hdl:1885/238283.
  35. ^Murúa, Pedro; Goecke, Franz; Westermeier, Renato; van West, Pieter; Küpper, Frithjof C.; Neuhauser, Sigrid (2017)."Maullinia braseltonii sp. nov. (Rhizaria, Phytomyxea, Phagomyxida): A Cyst-forming Parasite of the Bull KelpDurvillaea spp. (Stramenopila, Phaeophyceae, Fucales)".Protist.168 (4):468–480.doi:10.1016/j.protis.2017.07.001.PMC 5673062.PMID 28822911.
  36. ^abMabey, Abigail L.; Parvizi, Elahe; Ceridwen, Fraser I. (2021)."Pathogen inferred to have dispersed thousands of kilometres at sea, infecting multiple keystone kelp species".Marine Biology.168 (4): 47.Bibcode:2021MarBi.168...47M.doi:10.1007/s00227-021-03853-8.
  37. ^Baranuik, Chris (5 April 2021)."Kelp Pathogen Has Spread Across the Southern Ocean".The Scientist. Retrieved14 April 2021.
  38. ^Stuart, Jim (15 April 2010)."Seaweed: Cochayuyo and Luche". Eating Chilean.
  39. ^La Ficha PopArchived 2011-06-14 at theWayback Machine,La Cuarta, 31 October 2006.
  40. ^abc"Page 4. Traditional use of seaweeds".Te Ara: The Encyclopedia of New Zealand. 12 Jun 2006. Retrieved19 November 2019.
  41. ^abc"Traditional Māori food gathering".Museum of New Zealand Te Papa Tongarewa. 2016-05-30. Retrieved21 November 2019.
  42. ^"Maori shellfish project wins scholarship".SunLive. 13 May 2018. Retrieved26 November 2019.

External links

[edit]
Wikimedia Commons has media related toDurvillaea antarctica.
Wikispecies has information related toDurvillaea antarctica.
Durvillaea antarctica
Retrieved from "https://en.wikipedia.org/w/index.php?title=Durvillaea_antarctica&oldid=1238440245"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp