![]() | This articlereads likea press release ora news article and may belargely based onroutine coverage. Please helpimprove this article and addindependent sources.(April 2019) |
Charles A. S. Hall | |
---|---|
Born | Charles Addison Scott Hall 1943 (age 81–82) Hingham, Massachusetts, U.S. |
Alma mater | Colgate University Pennsylvania State University University of North Carolina |
Known for | work onPeak Oil |
Spouse | Myrna Hall |
Scientific career | |
Fields | Ecology |
Charles A. S. Hall (born 1943) is an Americansystems ecologist and ESF Foundation Distinguished Professor atState University of New York in the College of Environmental Science & Forestry.
Hall was born nearBoston, and received a B.A. inbiology fromColgate University, and an M.A. fromPenn State University. He trained as systems ecologist byHoward Odum at theUniversity of North Carolina, where he received a PhD.
Since then he has had a diverse career atBrookhaven Laboratory, The Ecosystems Center at the Marine Biological Laboratory,Woods Hole,Cornell University,University of Montana and, for the last 20 years, at the State University of New York College of Environmental Science and Forestry (SUNY ESF).
Hall, professor of systems ecology atSUNY-ESF teaches a freshman course called The Global Environment and the Evolution of Human Culture and graduate-level courses inSystems Ecology,Ecosystems,Energy systems, Tropical Development and Biophysical Economics.[1]
Hall retired from full-time teaching in June 2012,[2] and he now works to consolidate his life work into a format that will continue to be useful for future research.[3]
Hall's research interests are in the field ofSystems ecology with strong interests inbiophysical economics, and the relation ofenergy tosociety. His work has involved streams, estuaries and tropical forests but focused increasingly on human-dominated ecosystems in the US and Latin America. His research reflects his interest in understanding and developing analyses and computer simulation models of the complex systems of nature and humans and their interactions. Halls focus has been onenergy as it relates to economics and environment. His focus is studying material and energy flows referred to asIndustrial ecology, and applying this perspective, to attempting to understand humaneconomies from a biophysical rather than just social perspective.
Hall, and other biophysical economic thinkers are trained inecology andevolutionary biology, fields that break down the natural world as done also by physicists. These views hold the global economy in a different perspectivethat mainstream economists do not share. Central to Halls argument is an understanding that the survival of all living creatures is limited by the concept of energy return on investment (EROEI): that any living thing or living societies can survive only so long as they are capable of getting more net energy from any activity than they expend during the performance of that activity.[4]
"Energy used by the economy is a proxy of the amount of real work done in our economy," according to Charles A. Hall. In the 1980s, Hall and others hypothesised, "Over time, the Dow Jones should snake about the real amount of work." Twenty years later, a century's market and energy data shows that whenever theDow Jones Industrial Average spikes faster than US energy consumption, it crashes: 1929, 1970s, the dot.com bubble, and now with the mortgage collapse.[5]
Nicholas Georgescu-Roegen (a Romanian-born economist whose work in the 1970s began to define this new approach) models the economy as a living system. Like all life, it draws from its environment valuable (or “low entropy”) matter and energy, for animate life, food; for an economy, energy, ores, the raw materials provided by plants and animals. And like all life, an economy emits a high-entropy wake, it spews degraded matter and energy, that is... waste heat, waste gases, toxic byproducts, the molecules of iron lost to rust and abrasion. Low entropy emissions include trash and pollution in all their forms. Matter taken up into the economy can be recycled, using energy; but energy, used once, is forever unavailable to us at that level again. The law ofentropy commands a one-way flow downward from more to less useful forms. Thus, Georgescu-Roegen, paraphrasing the economistAlfred Marshall, said: “Biology, not mechanics, is our Mecca.”[6]