Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bromous acid

From Wikipedia, the free encyclopedia
(Redirected fromBromite)
Bromous acid
Space-filling model of the bromous acid molecule
Ball and stick model of the bromous acid molecule
Names
IUPAC names
hydroxy-λ3-bromanone
hydroxidooxidobromine
bromous acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
  • InChI=1S/BrHO2/c2-1-3/h(H,2,3) checkY
    Key: DKSMCEUSSQTGBK-UHFFFAOYSA-N checkY
  • InChI=1/BrHO2/c2-1-3/h(H,2,3)
    Key: DKSMCEUSSQTGBK-UHFFFAOYAC
  • O[Br+][O-]
Properties
HBrO2
Molar mass112.911 g/mol
Conjugate baseBromite
Related compounds
Otheranions
Hydrobromic acid;hypobromous acid;bromic acid;perbromic acid
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Bromous acid is theinorganic compound with the formula of HBrO2. It is an unstable compound, although salts of its conjugate base – bromites – have been isolated. In acidic solution, bromites decompose to bromine.[1]

Discovery

[edit]

In 1905, Richards A. H. proved the existence of bromous acid through a series of experiments involvingsilver nitrate (AgNO3) and bromine.[2] The reaction of excess cold aqueous to formhypobromous acid (HBrO),silver bromide (AgBr) andnitric acid (HNO3):

Br2 + AgNO3 + H2O → HBrO + AgBr + HNO3

Richards discovered that the effect of adding excess liquid bromine in a concentratedsilver nitrate (AgNO3) resulted in a different reaction mechanism. From numbers of equivalent portions of acid bromine formed from the previous reaction, the ratio between oxygen and bromine was calculated, with the exact value of O:Br (0.149975:0.3745), suggesting the acid compound contains two oxygen atom to one bromine atom. Thus, the chemical structure of the acid compound was deducted as HBrO2.[2]

According to Richards,hypobromous acid (HBrO) arises by the reaction of bromine and silver nitrate solution:[2]

Br2 + AgNO3 + H2O → HBrO + AgBr + HNO3
2 AgNO3 + HBrO + Br2 + H2O → HBrO2 + 2 AgBr + 2 HNO3

Isomerism

[edit]

The molecule HBrO2 has a bent structure with ∠(H−O−Br) angles of 106.1°. HOBrO also adopts a non-planar conformation with one isomer structure (2a) adopting a dihedral angle ∠(H−O−Br−O) of 74.2°. Moreover, the planar structures of two other isomers (2b-cis and 2c-trans) are transition state for fast enantiomerization.[3]

Another study identified three isomers: HOOBr, HOBrO, and HBr(O)O.[4]

Synthesis

[edit]

A oxidation reaction betweenhypobromous acid (HBrO) andhypochlorous acid (HClO) can be used to produce bromous acid (HBrO2) andhydrochloric acid (HCl).[citation needed]

HBrO + HClO → HBrO2 + HCl

A redox reaction ofhypobromous acid (HBrO) can form bromous acid (HBrO2) as its product:[citation needed]

HBrO + H2O − 2e → HBrO2 + 2H+

Thedisproportionation reaction of two equivalentshypobromous acid (HBrO) results in the formation of both bromous acid (HBrO2) andhydrobromic acid (HBr):[citation needed]

2 HBrO → HBrO2 + HBr

A rearrangement reaction, which results from the syn-proportion ofbromic acid (HBrO3) andhydrobromic acid (HBr) gives bromous acid (HBrO2):[citation needed]

2 HBrO3 + HBr → 3 HBrO2

Salts

[edit]
The bromite ion in sodium bromite.

The saltsNaBrO2·3H2O andBa(BrO2)2·H2O have been crystallized. Upon treatment of these aqueous solutions with salts of Pb2+, Hg2+, and Ag+, the corresponding heavy metal bromites precipitate as solids.[1]

Belousov–Zhabotinsky reaction

[edit]

Bromous acid is a product of theBelousov–Zhabotinsky reaction resulting from the combination of potassium bromate, cerium(IV) sulfate, propanedioic acid and citric acid in dilute sulfuric acid. Bromous acid is an intermediate stage of the reaction between bromate ion (BrO
3
) and bromine (Br):[5][6]

  • BrO
    3
    + 2 Br → HBrO2 + HBrO

Other relevant reactions in such oscillating reactions are:

  • HBrO2 +BrO
    3
    + H+ → 2 BrO
    2
    + H2O
  • 2 HBrO2BrO
    3
    + HOBr + H+

Bromites reducepermanganates tomanganates (VI):[1]

  • MnO
    4
    +BrO
    2
    + OH → 2 MnO2−
    4
    +BrO
    3
    + H2O

pKa measurement

[edit]

The acid dissociation constant of bromous acid,Ka =[H+][BrO
2
]
/[HBrO2]
, was determined using different methods.

The value of the pKa for bromous acid was estimated in research studying the decomposition of bromites. The research measured the rate of bromite decomposition as a function of hydrogen and bromite ion concentrations. The experimental data of the log of the initial velocity were plotted against pH. Using this method, the estimated pKa value for bromous acid was 6.25.[7]

Using another method, the pKa for bromous acid was measured based on the initial velocity of the reaction between sodium bromites and potassium iodine in a pH range of 2.9–8.0, at 25 °C and ionic strength of 0.06 M. The first order dependence of the initial velocity of thisdisproportionation reaction on [H+] in a pH range of 4.5–8.0. The value of acid dissociation constant measured by this method isKa =(3.7±0.9)×10−4 M and pKa =3.43±0.05.[8]

Reactivity

[edit]

In comparison to other oxygen-centered oxidants (hypohalites, anions of peroxides) and in line with its low basicity, bromite is a rather weak nucleophile.[9] Rate constants of bromite towards carbocations and acceptor-substituted olefins are by 1–3 orders of magnitude lower than the ones measured with hypobromite.

References

[edit]
  1. ^abcWiberg, Nils; Holleman, A. F.; Wiberg, Egon, eds. (2001)."Oxygen Acids of Bromine".Inorganic Chemistry. Academic Press. pp. 449–451.ISBN 978-0-12-352651-9.
  2. ^abcRichards, A. H. (15 January 1906). "The existence of bromous acid (HBrO
    2
    )".Journal of the Society of Chemical Industry.25 (1 Suppl):4–5.hdl:2027/mdp.39015030318508.
  3. ^Glaser, Rainer; Jost, Mary (16 August 2012). "Disproportionation of Bromous Acid HOBrO by Direct O-Transfer and via Anhydrides O(BrO)2 and BrO-BrO2. An Ab Initio Study of the Mechanism of a Key Step of the Belousov–Zhabotinsky Oscillating Reaction".The Journal of Physical Chemistry A.116 (32):8352–8365.Bibcode:2012JPCA..116.8352G.doi:10.1021/jp301329g.PMID 22871057.
  4. ^de Souza, Gabriel L. C.; Brown, Alex (July 2016). "The ground and excited states of HBrO2 [HOOBr, HOBrO, and HBr(O)O] and HBrO3 (HOOOBr and HOOBrO) isomers".Theoretical Chemistry Accounts.135 (7).doi:10.1007/s00214-016-1931-8.
  5. ^Vassalini, Irene; Alessandri, Ivano (30 December 2015)."Spatial and Temporal Control of Information Storage in Cellulose by Chemically Activated Oscillations".ACS Applied Materials & Interfaces.7 (51):28708–28713.doi:10.1021/acsami.5b11857.PMID 26654462.
  6. ^Field, Richard J.; Koros, Endre; Noyes, Richard M. (December 1972). "Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system".Journal of the American Chemical Society.94 (25):8649–8664.Bibcode:1972JAChS..94.8649F.doi:10.1021/ja00780a001.
  7. ^Massagli, A.; Indelli, A.; Pergola, F. (1970). "Kinetic investigation of the decomposition of bromite".Inorganica Chimica Acta.4:593–596.doi:10.1016/S0020-1693(00)93357-7.
  8. ^Faria, R. B.; Epstein, Irving R.; Kustin, Kenneth (January 1994). "Kinetics of Disproportionation and pKa of Bromous Acid".The Journal of Physical Chemistry.98 (4):1363–1367.doi:10.1021/j100055a051.
  9. ^Mayer, Robert J.; Ofial, Armin R. (18 May 2018). "Nucleophilic Reactivities of Bleach Reagents".Organic Letters.20 (10):2816–2820.doi:10.1021/acs.orglett.8b00645.PMID 29741385.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bromous_acid&oldid=1273944288"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp