Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Atomic units

From Wikipedia, the free encyclopedia
(Redirected fromAtomic unit)
System of measurement
Not to be confused withatomic mass units.

Theatomic units are asystem ofnatural units of measurement that is especially convenient for calculations inatomic physics and related scientific fields, such ascomputational chemistry andatomic spectroscopy. They were originally suggested and named by the physicistDouglas Hartree.[1]Atomic units are often abbreviated "a.u." or "au", not to be confused with similar abbreviations used forastronomical units,arbitrary units, andabsorbance units in other contexts.

Motivation

[edit]

In the context of atomic physics, using the atomic units system can be a convenient shortcut, eliminating symbols and numbers and reducing the order of magnitude of most numbers involved.For example, theHamiltonian operator in theSchrödinger equation for thehelium atom with standard quantities, such as when using SI units, is[2]

H^=22me1222me222e24πϵ0r12e24πϵ0r2+e24πϵ0r12,{\displaystyle {\hat {H}}=-{\frac {\hbar ^{2}}{2m_{\text{e}}}}\nabla _{1}^{2}-{\frac {\hbar ^{2}}{2m_{\text{e}}}}\nabla _{2}^{2}-{\frac {2e^{2}}{4\pi \epsilon _{0}r_{1}}}-{\frac {2e^{2}}{4\pi \epsilon _{0}r_{2}}}+{\frac {e^{2}}{4\pi \epsilon _{0}r_{12}}},}

but adopting the convention associated with atomic units that transforms quantities intodimensionless equivalents, it becomes

H^=121212222r12r2+1r12.{\displaystyle {\hat {H}}=-{\frac {1}{2}}\nabla _{1}^{2}-{\frac {1}{2}}\nabla _{2}^{2}-{\frac {2}{r_{1}}}-{\frac {2}{r_{2}}}+{\frac {1}{r_{12}}}.}

In this convention, the constants{\displaystyle \hbar },me{\displaystyle m_{\text{e}}},4πϵ0{\displaystyle 4\pi \epsilon _{0}}, ande{\displaystyle e} all correspond to the value1{\displaystyle 1} (see§ Definition below). The distances relevant to the physics expressed in SI units are naturally on the order of1010m{\displaystyle 10^{-10}\,\mathrm {m} }, while expressed in atomic units distances are on the order of1a0{\displaystyle 1a_{0}} (oneBohr radius, the atomic unit of length). An additional benefit of expressing quantities using atomic units is that their values calculated and reported in atomic units do not change when values of fundamental constants are revised, since the fundamental constants are built into the conversion factors between atomic units and SI.

History

[edit]

Hartree defined units based on three physical constants:[1]: 91 

Both in order to eliminate various universal constants from the equations and also to avoid high powers of 10 in numerical work, it is convenient to express quantities in terms of units, which may be called 'atomic units', defined as follows:

Unit of length,aH=h2/4π2me2{\displaystyle a_{\text{H}}=h^{2}\,/\,4\pi ^{2}me^{2}}, on the orbital mechanics the radius of the 1-quantum circular orbit of theH-atom with fixed nucleus.
Unit of charge,e{\displaystyle e}, the magnitude of the charge on the electron.
Unit of mass,m{\displaystyle m}, the mass of the electron.

Consistent with these are:

Unit of action,h/2π{\displaystyle h\,/\,2\pi }.
Unit of energy,e2/aH=2hcR={\displaystyle e^{2}/a_{\text{H}}=2hcR=} [...]
Unit of time,1/4πcR{\displaystyle 1\,/\,4\pi cR}.
 
— D.R. Hartree,The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods

Here, the modern equivalent ofR{\displaystyle R} is theRydberg constantR{\displaystyle R_{\infty }}, ofm{\displaystyle m} is the electron massme{\displaystyle m_{\text{e}}}, ofaH{\displaystyle a_{\text{H}}} is the Bohr radiusa0{\displaystyle a_{0}}, and ofh/2π{\displaystyle h/2\pi } is the reduced Planck constant{\displaystyle \hbar }. Hartree's expressions that containe{\displaystyle e} differ from the modern form due to a change in the definition ofe{\displaystyle e}, as explained below.

In 1957, Bethe and Salpeter's bookQuantum mechanics of one-and two-electron atoms[3] built on Hartree's units, which they calledatomic units abbreviated "a.u.". They chose to use{\displaystyle \hbar }, their unit ofaction andangular momentum in place of Hartree's length as the base units. They noted that the unit of length in this system is the radius of the firstBohr orbit and their velocity is the electron velocity in Bohr's model of the first orbit.

In 1959, Shull and Hall[4] advocatedatomic units based on Hartree's model but again chose to use{\displaystyle \hbar } as the defining unit. They explicitly named the distance unit a "Bohr radius"; in addition, they wrote the unit of energy asH=me4/2{\displaystyle H=me^{4}/\hbar ^{2}} and called it aHartree. These terms came to be used widely in quantum chemistry.[5]: 349 

In 1973 McWeeny extended the system of Shull and Hall by addingpermittivity in the form ofκ0=4πϵ0{\displaystyle \kappa _{0}=4\pi \epsilon _{0}} as a defining or base unit.[6][7] Simultaneously he adopted the SI definition ofe{\displaystyle e} so that his expression for energy in atomic units ise2/(4πϵ0a0){\displaystyle e^{2}/(4\pi \epsilon _{0}a_{0})}, matching the expression in the 8th SI brochure.[8]

Definition

[edit]

A set of base units in the atomic system as in one proposal are the electron rest mass, the magnitude of the electronic charge, the Planck constant, and the permittivity.[6][9] In the atomic units system, each of these takes the value 1; the corresponding values in theInternational System of Units[10]: 132  are given in the table.

Base atomic units[*]
Symbol and NameQuantity (dimensions)[†]Atomic
units[‡]
SI units
{\displaystyle \hbar },reduced Planck constantaction (ML2T−1)11.054571817...×10−34 J⋅s [11]
e{\displaystyle e},elementary chargecharge (Q)11.602176634×10−19 C [12]
me{\displaystyle m_{\text{e}}},electron rest massmass (M)19.1093837139(28)×10−31 kg [13]
4πϵ0{\displaystyle 4\pi \epsilon _{0}},permittivitypermittivity (Q2W−1L−1)11.11265005620(17)×10−10 F⋅m−1 [14]

Table notes

[edit]
  • ^ *: This arbitrary choice of base units was proposed by McWeeny.
  • ^ †: SeeDimensional analysis. W represents the dimension of energy, ML2T−2.[6]
  • ^ ‡: In the 'atomic units' column, the convention that uses dimensionless equivalents has been applied.

Units

[edit]

Three of the defining constants (reduced Planck constant, elementary charge, and electron rest mass) are atomic units themselves – ofaction,[15]electric charge,[16] andmass,[17] respectively. Two named units are those oflength (Bohr radiusa04πϵ02/mee2{\displaystyle a_{0}\equiv 4\pi \epsilon _{0}\hbar ^{2}/m_{\text{e}}e^{2}}) andenergy (hartreeEh2/mea02{\displaystyle E_{\text{h}}\equiv \hbar ^{2}/m_{\text{e}}a_{0}^{2}}).

Defined atomic units
Atomic unit ofExpressionValue in SI unitsOther equivalents
electric charge densitye/a03{\displaystyle e/a_{0}^{3}}1.08120238677(51)×1012 C⋅m−3 [18]
electric currenteEh/{\displaystyle eE_{\text{h}}/\hbar }6.6236182375082(72)×10−3 A [19]
electric chargee{\displaystyle e}1.602176634×10−19 C [20]
electric dipole momentea0{\displaystyle ea_{0}}8.4783536198(13)×10−30 C⋅m [21]2.541746473 D
electric quadrupole momentea02{\displaystyle ea_{0}^{2}}4.4865515185(14)×10−40 C⋅m2 [22]
electric potentialEh/e{\displaystyle E_{\text{h}}/e}27.211386245981(30) V [23]
electric fieldEh/ea0{\displaystyle E_{\text{h}}/ea_{0}}5.14220675112(80)×1011 V⋅m−1 [24]
electric field gradientEh/ea02{\displaystyle E_{\text{h}}/ea_{0}^{2}}9.7173624424(30)×1021 V⋅m−2 [25]
permittivitye2/a0Eh{\displaystyle e^{2}/a_{0}E_{\text{h}}}1.11265005620(17)×10−10 F⋅m−1 [14]4πϵ0{\displaystyle 4\pi \epsilon _{0}}
electric polarizabilitye2a02/Eh{\displaystyle e^{2}a_{0}^{2}/E_{\text{h}}}1.64877727212(51)×10−41 C2⋅m2⋅J−1 [26]
1sthyperpolarizabilitye3a03/Eh2{\displaystyle e^{3}a_{0}^{3}/E_{\text{h}}^{2}}3.2063612996(15)×10−53 C3⋅m3⋅J−2 [27]
2nd hyperpolarizabilitye4a04/Eh3{\displaystyle e^{4}a_{0}^{4}/E_{\text{h}}^{3}}6.2353799735(39)×10−65 C4⋅m4⋅J−3 [28]
magnetic dipole momente/me{\displaystyle \hbar e/m_{\text{e}}}1.85480201315(58)×10−23 J⋅T−1 [29]2μB{\displaystyle 2\mu _{\text{B}}}
magnetic flux density/ea02{\displaystyle \hbar /ea_{0}^{2}}2.35051757077(73)×105 T [30]2.3505×109 G
magnetizabilitye2a02/me{\displaystyle e^{2}a_{0}^{2}/m_{\text{e}}}7.8910365794(49)×10−29 J⋅T−2 [31]
action{\displaystyle \hbar }1.054571817...×10−34 J⋅s [32]
energyEh{\displaystyle E_{\text{h}}}4.3597447222060(48)×10−18 J [33]2hcR{\displaystyle 2hcR_{\infty }},α2mec2{\displaystyle \alpha ^{2}m_{\text{e}}c^{2}},27.211386245988(53) eV [34]
forceEh/a0{\displaystyle E_{\text{h}}/a_{0}}8.2387235038(13)×10−8 N [35]82.387 nN,51.421 eV·Å−1
lengtha0{\displaystyle a_{0}}5.29177210544(82)×10−11 m [36]/αmec{\displaystyle \hbar /\alpha m_{\text{e}}c},0.529177 Å
massme{\displaystyle m_{\text{e}}}9.1093837139(28)×10−31 kg [37]
momentum/a0{\displaystyle \hbar /a_{0}}1.99285191545(31)×10−24 kg⋅m⋅s−1 [38]
time/Eh{\displaystyle \hbar /E_{\text{h}}}2.4188843265864(26)×10−17 s [39]
velocitya0Eh/{\displaystyle a_{0}E_{\text{h}}/\hbar }2.18769126216(34)×106 m⋅s−1 [40]αc{\displaystyle \alpha c}

c{\displaystyle c}speed of light,ϵ0{\displaystyle \epsilon _{0}}vacuum permittivity,R{\displaystyle R_{\infty }}Rydberg constant,h{\displaystyle h}:Planck constant,α{\displaystyle \alpha }fine-structure constant,μB{\displaystyle \mu _{\text{B}}}Bohr magneton,correspondence

Conventions

[edit]

Different conventions are adopted in the use of atomic units, which vary in presentation, formality and convenience.

Explicit units

[edit]

A convention that eliminates units

[edit]

In atomic physics, it is common to simplify mathematical expressions by a transformation of all quantities:

  • Hartree suggested that expression in terms of atomic units allows us "to eliminate various universal constants from the equations", which amounts to informally suggesting a transformation of quantities and equations such that all quantities are replaced by corresponding dimensionless quantities.[1]: 91  He does not elaborate beyond examples.
  • McWeeny suggests that "... their adoption permits all the fundamental equations to be written in a dimensionless form in which constants such ase{\displaystyle e},m{\displaystyle m} andh{\displaystyle h} are absent and need not be considered at all during mathematical derivations or the processes of numerical solution; the units in which any calculated quantity must appear are implicit in its physical dimensions and may be supplied at the end." He also states that "An alternative convention is to interpret the symbols as the numerical measures of the quantities they represent, referred to some specified system of units: in this case the equations contain only pure numbers or dimensionless variables; ... the appropriate units are supplied at the end of a calculation, by reference to the physical dimensions of the quantity calculated. [This] convention has much to recommend it and is tacitly accepted in atomic and molecular physics whenever atomic units are introduced, for example for convenience in computation."
  • An informal approach is often taken, in which "equations are expressed in terms of atomic units simply by setting=me=e=4πϵ0=1{\displaystyle \hbar =m_{\text{e}}=e=4\pi \epsilon _{0}=1}".[41][42][43] This is a form of shorthand for the more formal process of transformation between quantities that is suggested by others, such as McWeeny.

Physical constants

[edit]

Dimensionless physical constants retain their values in any system of units. Of note is thefine-structure constantα=e2/(4πϵ0c)1/137{\displaystyle \alpha ={e^{2}}/{(4\pi \epsilon _{0}\,\hbar c)}\approx 1/137}, which appears in expressions as a consequence of the choice of units. For example, the numeric value of thespeed of light, expressed in atomic units, isc=1/αa.u.137a.u.{\displaystyle c=1/\alpha \,{\text{a.u.}}\approx 137\,{\text{a.u.}}}[44]: 597 

Some physical constants expressed in atomic units
NameSymbol/DefinitionValue in atomic units
speed of lightc{\displaystyle c}(1/α)a0Eh/137a0Eh/{\displaystyle (1/\alpha )\,a_{0}E_{\text{h}}/\hbar \approx 137\,a_{0}E_{\text{h}}/\hbar }
classical electron radiusre=14πϵ0e2mec2{\displaystyle r_{\text{e}}={\frac {1}{4\pi \epsilon _{0}}}{\frac {e^{2}}{m_{\text{e}}c^{2}}}}α2a00.0000532a0{\displaystyle \alpha ^{2}\,a_{0}\approx 0.0000532\,a_{0}}
reduced Compton wavelength
of the electron
ƛe=mec{\displaystyle ={\frac {\hbar }{m_{\text{e}}c}}}αa00.007297a0{\displaystyle \alpha \,a_{0}\approx 0.007297\,a_{0}}
proton massmp{\displaystyle m_{\text{p}}}1836me{\displaystyle \approx 1836\,m_{\text{e}}}

Bohr model in atomic units

[edit]

Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classicalBohr model of thehydrogen atom for the bound electron in itsground state:

  • Mass = 1 a.u. of mass
  • Charge = −1 a.u. of charge
  • Orbital radius = 1 a.u. of length
  • Orbital velocity = 1 a.u. of velocity[44]: 597 
  • Orbital period = 2π a.u. of time
  • Orbitalangular velocity = 1 radian per a.u. of time
  • Orbitalmomentum = 1 a.u. of momentum
  • Ionization energy =1/2 a.u. of energy
  • Electric field (due to nucleus) = 1 a.u. of electric field
  • Lorentz force (due to nucleus) = 1 a.u. of force

References

[edit]

  1. ^abcHartree, D. R. (1928),"The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods",Mathematical Proceedings of the Cambridge Philosophical Society,24 (1), Cambridge University Press:89–110,Bibcode:1928PCPS...24...89H,doi:10.1017/S0305004100011919,S2CID 122077124
  2. ^McQuarrie, Donald A. (2008).Quantum Chemistry (2nd ed.). New York, NY: University Science Books.
  3. ^Bethe, Hans A.; Salpeter, Edwin E. (1957).Introduction. Units. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 2–4.doi:10.1007/978-3-662-12869-5_1.ISBN 978-3-662-12871-8.
  4. ^abcShull, H.; Hall, G. G. (1959). "Atomic Units".Nature.184 (4698): 1559.Bibcode:1959Natur.184.1559S.doi:10.1038/1841559a0.S2CID 23692353.
  5. ^Levine, Ira N. (1991).Quantum chemistry. Pearson advanced chemistry series (4 ed.). Englewood Cliffs, NJ: Prentice-Hall International.ISBN 978-0-205-12770-2.
  6. ^abcMcWeeny, R. (May 1973)."Natural Units in Atomic and Molecular Physics".Nature.243 (5404):196–198.Bibcode:1973Natur.243..196M.doi:10.1038/243196a0.ISSN 0028-0836.S2CID 4164851.
  7. ^abJerrard, H. G.; McNeill, D. B. (1992).Systems of units. Dordrecht: Springer Netherlands. pp. 3–8.doi:10.1007/978-94-011-2294-8_2.ISBN 978-0-412-46720-2.
  8. ^International Bureau of Weights and Measures (2006),The International System of Units (SI)(PDF) (8th ed.), p. 125,ISBN 92-822-2213-6,archived(PDF) from the original on 2021-06-04, retrieved2021-12-16. Note that this information is omitted in the 9th edition.
  9. ^Paul Quincey; Peter J Mohr; William D Phillips (2019), "Angles are inherently neither length ratios nor dimensionless",Metrologia,56 (4): 043001,arXiv:1909.08389,Bibcode:2019Metro..56d3001Q,doi:10.1088/1681-7575/ab27d7,In [the Hartree system of atomic] units,me,e,ħ and1/4πε0 are all set equal to unity. – a reference giving an equivalent set of defining constants.
  10. ^"9th edition of the SI Brochure". BIPM. 2019. Retrieved2019-05-20.
  11. ^"reduced Planck constant".CODATA.
  12. ^"elementary charge".CODATA.
  13. ^"electron mass".CODATA.
  14. ^ab"atomic unit of permittivity".CODATA.
  15. ^"atomic unit of action".CODATA.
  16. ^"atomic unit of charge".CODATA.
  17. ^"atomic unit of mass".CODATA.
  18. ^"atomic unit of charge density".CODATA.
  19. ^"atomic unit of current".CODATA.
  20. ^"atomic unit of charge".CODATA.
  21. ^"atomic unit of electric dipole moment".CODATA.
  22. ^"atomic unit of electric quadrupole moment".CODATA.
  23. ^"atomic unit of electric potential".CODATA.
  24. ^"atomic unit of electric field".CODATA.
  25. ^"atomic unit of electric field gradient".CODATA.
  26. ^"atomic unit of electric polarizability".CODATA.
  27. ^"atomic unit of 1st hyperpolarizability".CODATA.
  28. ^"atomic unit of 2nd hyperpolarizability".CODATA.
  29. ^"atomic unit of magnetic dipole moment".CODATA.
  30. ^"atomic unit of magnetic flux density".CODATA.
  31. ^"atomic unit of magnetizability".CODATA.
  32. ^"atomic unit of action".CODATA.
  33. ^"atomic unit of energy".CODATA.
  34. ^"Hartree energy in eV".CODATA.
  35. ^"atomic unit of force".CODATA.
  36. ^"atomic unit of length".CODATA.
  37. ^"atomic unit of mass".CODATA.
  38. ^"atomic unit of momentum".CODATA.
  39. ^"atomic unit of time".CODATA.
  40. ^"atomic unit of velocity".CODATA.
  41. ^abPilar, Frank L. (2001).Elementary Quantum Chemistry. Dover Publications. p. 155.ISBN 978-0-486-41464-5.
  42. ^Bishop, David M. (1993).Group Theory and Chemistry. Dover Publications. p. 217.ISBN 978-0-486-67355-4.
  43. ^Drake, Gordon W. F. (2006).Springer Handbook of Atomic, Molecular, and Optical Physics (2nd ed.). Springer. p. 5.ISBN 978-0-387-20802-2.
  44. ^abKarplus, Martin; Porter, Richard Needham (1970),Atoms and Molecules: An Introduction for Students of Physical Chemistry, Netherlands: W. A. Benjamin
  45. ^"CODATA Internationally recommended 2022 values of the Fundamental Physical Constants".NIST Reference on Constants, Units, and Uncertainty.NIST.
Base units
Derived units
with special names
Other accepted units
See also
Current
General
Specific
Natural
Background
Metric
UK/US
Historic
Metric
Europe
Asia
Africa
North America
South America
Ancient
List articles
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Atomic_units&oldid=1277937378"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp