Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Anchiornithidae

From Wikipedia, the free encyclopedia
Extinct family of dinosaurs

Anchiornithids
Skeletal restoration ofAnchiornis huxleyi by Scott Hartman, 2017
Scientific classificationEdit this classification
Domain:Eukaryota
Kingdom:Animalia
Phylum:Chordata
Clade:Dinosauria
Clade:Saurischia
Clade:Theropoda
Clade:Paraves
Family:Anchiornithidae
Xu et al. 2016sensu Foth & Rauhut, 2017
Type species
Anchiornis huxleyi
Xuet al., 2009
Genera
Synonyms
  • Tetrapterygidae(Chatterjee, 2015)
  • "Anchiornithosaurs"(Rauhutet al.,2016)
  • Anchiorninae [sic](Xuet al., 2016sensu Huet al.,2018)

Anchiornithidae is a family of smallparaviandinosaurs.[1] Anchiornithids have been classified at varying positions in the paravian tree, with some scientists classifying them as a distinct family, a basal subfamily ofTroodontidae,[2][3][4][5] members ofArchaeopterygidae,[2][6] or an assemblage of dinosaurs that are an evolutionary grade withinAvialae[7] or Paraves.[8]

Description

[edit]

Anchiornithids share many general features with otherparavians, including early avialans. They were small and lightly-built feathered carnivores, similar in biology toArchaeopteryx, earlydromaeosaurids likeMicroraptor, and particularly troodontids. They are almost exclusively known fromLate Jurassic Chinese deposits, althoughOstromia was discovered inGermany andYixianosaurus (a putative member of the group only known from forelimbs) is believed to hail from the early Cretaceous. Most had long legs, arms, and hands, although some (Eosinopteryx) had slightly reduced forelimbs.[9]

Feathering

[edit]
Life restoration ofSerikornis sungei

Although it is practically certain that every anchiornithid possessed advancedpennaceous feathers, there is still much variety in feathering between genera (or between individuals in the case of numerous genera such asAnchiornis). Most had vaned tail feathers forming a frond-shaped tail, with the tails feathers ofCaihong being particularly long and in some cases asymmetrical.[10] However,Eosinopteryx,Serikornis, andAurornis were preserved with short and downy tail feathering. Some studies on the body feathering of anchiornithids indicate that the feathers were pennaceous, but seemingly lacked barbules, making them "shaggy" or "silky" in life.[11][8]

Long pennaceous feathers were present on the arms of most anchiornithids. However, these feathers were slender, symmetrical, and unspecialized, probably useless for flight. They formed rows which were attached directly to a large fleshy propatagium connecting the upper and lower arm.[12][8]

Most anchiornithids also had dense feathering extending down their legs. A few had short leg feathering, but most (Anchiornis andPedopenna, for example) had very long pennaceous feathers on their legs, giving them the moniker of "four-winged dinosaurs", a trait also shared bymicroraptorians.Eosinopteryx seemingly lacked any sort of feathers on the lower part of its legs, but its close relativeSerikornis possessed both plumaceous (downy) feathers extending onto its toes as well as pennaceous feathers further up the leg.[9][8]

Distinguishing features

[edit]

Foth and Rauhut (2017) established several diagnostic features present in anchiornithids:[1]

  • Nutrient foramina on thedentary are placed in a deep groove (also in most troodontids and some othercoelurosaurs);
  • Anterior dentary teeth which are smaller, more numerous, and more closely spaced than those in the middle of the tooth row (also in most troodontids);
  • The front edge of theacromion margin of thescapula is bent or hooked outwards (also in severaloviraptorosaurs and more derived avialans);
  • The inside surface of proximal part of thefibula is flat (also inalvarezsaurids,therizinosauroids and derived avialans);
  • Fan-shaped posterior dorsal neural spines (also incompsognathids and some derived avialans);
  • Extensive large pennaceous feathers on the foot and ankle (also inMicroraptor andSapeornis).

Systematic history

[edit]

In 2015 Chatterjee createdTetrapterygidae in the second edition of his bookThe Rise of Birds: 225 Million Years of Evolution, where he includedXiaotingia,Aurornis,Anchiornis, and evenMicroraptor; together they were proposed to be the sister group of theAvialae.[13] However this family is invalid as must include the genusTetrapteryx, which is the junior synonym ofGrus – therefore Tetrapterygidae is a junior synonym ofGruidae.[14]

In their description ofWiehenvenator Rauhut and colleagues had informally called the group as "Anchiornithosaurs" which they placed outside of Avialae.[15]

The clade was originally named as "Anchiornithinae" by Xuet al. (2016) and defined as for "the most inclusive clade includingAnchiornis but notArchaeopteryx,Gallus,Troodon,Dromaeosaurus,Unenlagia, orEpidexipteryx".[16]

In 2017 Foth and Rauhut in their re-evaluation of the HaarlemArchaeopteryx specimen (which they classified it in its own distinct genusOstromia[1]) found that the anchiornithids are a distinct family closer to the ancestry of birds.[1] They provided their own definition of Anchiornithidae as "all maniraptorantheropods that are more closely related toAnchiornis huxleyi than toPasser domesticus,Archaeopteryx lithographica,Dromaeosaurus albertensis,Troodon formosus, orOviraptor philoceratops."[1]

During the description ofHalszkaraptor, Cauet al. (2017) incorporated many putative anchiornithids into two different large-scale phylogenetic analyses. The first analysis was a comprehensive study of theropod dinosaurs originally designed by Leeet al. for a 2014 paper on miniaturization in theropods leading up to the evolution of birds. Cauet al.'s usage of this first analysis found support for Anchiornithidae being a distinctive family of avialans. The strict consensus tree of the first analysis is given below:[17]

Avialae

The second analysis was first used in a different paper on theropod size published by Brusatteet al. in 2014. This analysis (which was updated by Cauet al. during a 2015 study on the affinities ofBalaur bondoc[18]) focused specifically on coelurosaurs and found that anchiornithids (represented only byAnchiornis, Xiaotingia, Aurornis, andEosinopteryx in the analysis) were troodontids rather than avialans, in contrast to the first analysis.[17]

The description ofCaihong by Huet al. (2018) also implemented the Brusatte analysis and found the same result. However, this study also implemented an analysis performed by Xuet al. (2015) during the description ofYi qi. This analysis placed anchiornithids (or as the study calls them, members of "Anchiorninae") either as troodontids or unresolved paravians, depending on whether parsimony or bootstrap analyses are used.[19]

An analysis used in the description of theJurassic birdAlcmonavis by Rauhutet al. (2019) recovered anchiornithids (represented in the analysis byEosinopteryx,Anchiornis, andOstromia) as the most basal avialans.Xiaotingia andPedopenna were placed as more advanced avialans closer toArchaeopteryx.[20]

In 2019 with the description of the Late Jurassic genusHesperornithoides, Hartmanet al., using every named Mesozoicmaniraptoromorph (with the addition of 28 unnamed specimens), which they scored 700 characters and 501 operational taxonomic units, found that most of the anchiornithids are members of Archaeopterygidae, with onlyXiaotingia andYixianosaurus being classified as a troodontid and a dromaeosaurid respectively,Pedopenna found in many possible positions within the Paraves phylogeny, andOstromia described too late to include in the analysis.[6] Below is their phylogeny:

Archaeopterygidae

The cladogram below shows the results of the phylogenetic analysis by Cau (2020).[21]

Cau (2024) found support for the inclusion ofScansoriopterygidae in Anchiornithidae.[22]

Palaeoecology

[edit]

A good majority of the known anchiornithid fossils have been recovered from theTiaojishan Formation inLiaoning,China dating back to 160 million years.[23][24] The climate during this period of time would have beensubtropical totemperate, warm andhumid based on the plant life present in the Tiaojishan Formation.[25] This environment was dominated plant bygymnosperm trees. There wereginkgopsids likeGinkoites,Ginkgo,Baiera,Czekanowskia, andPhoenicopsis. There were alsoconifers likePityophyllum,Rhipidiocladus,Elatocladus,Schizolepis, andPodozamites. Also,Lycopsids likeLycopodites andSellaginellities, horsetails (Sphenopsida) likeEquisetum,cycads likeAnomozamites, and ferns (Filicopsida) likeTodites andConiopteris.[26]

Chinese anchiornithids discovered outside of the Tiaojishan Formation includeYixianosaurus longimanus, which was found in the 125 million-year-old Early CretaceousYixian Formation.Fujianvenator prodigiosus was discovered in the 148 to 150 million-year-old Zhenghe Biota of southeastern China, which was dominated by aquatic and semi-aquatic fossils such as fish and turtles indicative of a lacustrine swamp environment.[27] Only one genus of anchiornithid has been found outside of China:Ostromia, which is found in thePainten Formation fromRiedenburg,Bavaria,Germany.[1]

References

[edit]
  1. ^abcdefFoth, C.; Rauhut, O. W. M. (2017)."Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs".BMC Evolutionary Biology.17 (1): 236.Bibcode:2017BMCEE..17..236F.doi:10.1186/s12862-017-1076-y.PMC 5712154.PMID 29197327.
  2. ^abXing Xu; Hailu You; Kai Du & Fenglu Han (28 July 2011)."AnArchaeopteryx-like theropod from China and the origin of Avialae"(PDF).Nature.475 (7357):465–470.doi:10.1038/nature10288.PMID 21796204.S2CID 205225790. Archived fromthe original(PDF) on 20 December 2016. Retrieved6 December 2017.
  3. ^Lee, M. S. Y. & Worthy, T. H. (2011)."Likelihood reinstatesArchaeopteryx as a primitive bird".Biology Letters.8 (2):299–303.doi:10.1098/rsbl.2011.0884.PMC 3297401.PMID 22031726.
  4. ^Stephen L. Brusatte; Graeme T. Lloyd; Steve C. Wang; Mark A. Norell (2014)."Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition".Current Biology.24 (20):2386–2392.Bibcode:2014CBio...24.2386B.doi:10.1016/j.cub.2014.08.034.PMID 25264248.S2CID 8879023.
  5. ^Cai-zhi Shen; Bo Zhao; Chun-ling Gao; Jun-chang Lü; Martin Kundrát (2017). "A New Troodontid Dinosaur (Liaoningvenator curriei gen. et sp. nov.) from the Early Cretaceous Yixian Formation in Western Liaoning Province".Acta Geoscientica Sinica.38 (3):359–371.doi:10.3975/cagsb.2017.03.06.
  6. ^abHartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (2019)."A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight".PeerJ.7: e7247.doi:10.7717/peerj.7247.PMC 6626525.PMID 31333906.
  7. ^Wang, M.; Wang, X.; Wang, Y.; Zhou, Z. (2016)."A new basal bird from China with implications for morphological diversity in early birds".Scientific Reports.6: 19700.Bibcode:2016NatSR...619700W.doi:10.1038/srep19700.PMC 4726217.PMID 26806355.
  8. ^abcdLefèvre, Ulysse; Cau, Andrea; Cincotta, Aude; Hu, Dongyu; Chinsamy, Anusuya; Escuillié, François; Godefroit, Pascal (2017). "A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers".The Science of Nature.104 (9–10): 74.Bibcode:2017SciNa.104...74L.doi:10.1007/s00114-017-1496-y.PMID 28831510.S2CID 253637872.
  9. ^abGodefroit, Pascal; Demuynck, Helena; Dyke, Gareth; Hu, Dongyu; Escuillié, François; Claeys, Philippe (22 January 2013)."Reduced plumage and flight ability of a new Jurassic paravian theropod from China".Nature Communications.4: 1394.doi:10.1038/ncomms2389.PMID 23340434.S2CID 205315142.
  10. ^Dongyu Hu; Julia A. Clarke; Chad M. Eliason; Rui Qiu; Quanguo Li; Matthew D. Shawkey; Cuilin Zhao; Liliana D'Alba; Jinkai Jiang; Xing Xu (2018)."A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution".Nature Communications.9 (1): Article number 217.Bibcode:2018NatCo...9..217H.doi:10.1038/s41467-017-02515-y.PMC 5768872.PMID 29335537.
  11. ^Saitta, Evan T.; Gelernter, Rebecca; Vinther, Jakob (2018)."Additional information on the primitive contour and wing feathering of paravian dinosaurs".Palaeontology.61 (2):273–288.doi:10.1111/pala.12342.hdl:1983/61351c6d-1517-4101-bac8-50cbb733761d.ISSN 1475-4983.S2CID 56104335.
  12. ^Wang, Xiaoli; Pittman, Michael; Zheng, Xiaoting; Kaye, Thomas G.; Falk, Amanda R.; Hartman, Scott A.; Xu, Xing (1 March 2017)."Basal paravian functional anatomy illuminated by high-detail body outline".Nature Communications.8: 14576.Bibcode:2017NatCo...814576W.doi:10.1038/ncomms14576.PMC 5339877.PMID 28248287.
  13. ^Chatterjee, S. (2015). The rise of birds: 225 million years of evolution. Johns Hopkins University Press, 45–48.
  14. ^Matthew Martyniuk (24 May 2015)."The Crane and the Microraptor". DinoGoss: A blog about stem-birds. Archived fromthe original on 16 June 2015.
  15. ^Rauhut, O.W.M., Hübner T.R., and Lanser, K., 2015, "A new theropod dinosaur from the late Middle Jurassic of Germany and theropod faunal turnover during the Jurassic",Libro de resúmenes del V Congreso Latinoamericano de Paleontología de Vertebrados. 62
  16. ^Xu; et al. (2016). "An Updated Review of the Middle-Late Jurassic Yanliao Biota: Chronology, Taphonomy, Paleontology and Paleoecology".Acta Geologica Sinica.90 (6):2229–2243.doi:10.1111/1755-6724.13033.S2CID 133314433.
  17. ^abCau, A.; Beyrand, V.; Voeten, D.; Fernandez, V.; Tafforeau, P.; Stein, K.; Barsbold, R.; Tsogtbaatar, K.; Currie, P.; Godefroit, P. (2017). "Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs".Nature.552 (7685):395–399.Bibcode:2017Natur.552..395C.doi:10.1038/nature24679.PMID 29211712.S2CID 4471941.
  18. ^Cau, Andrea; Brougham, Tom; Naish, Darren (18 June 2015)."The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropodBalaur bondoc(Dinosauria, Maniraptora): dromaeosaurid or flightless bird?".PeerJ.3: e1032.doi:10.7717/peerj.1032.ISSN 2167-8359.PMC 4476167.PMID 26157616.
  19. ^Xu, Xing; Jiang, Jinkai; D'Alba, Liliana; Zhao, Cuilin; Matthew D. Shawkey; Li, Quanguo; Qiu, Rui; Eliason, Chad M.; Clarke, Julia A. (15 January 2018)."A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution".Nature Communications.9 (1): 217.Bibcode:2018NatCo...9..217H.doi:10.1038/s41467-017-02515-y.ISSN 2041-1723.PMC 5768872.PMID 29335537.
  20. ^Rauhut, O.; Tischlinger, H.; Foth, C. (14 May 2019)."A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany".eLife.8: e43789.doi:10.7554/eLife.43789.ISSN 2050-084X.PMC 6516837.PMID 31084702.
  21. ^Cau, Andrea (25 February 2020)."The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory".PeerJ.8: e8672.doi:10.7717/peerj.8672.ISSN 2167-8359.PMC 7047864.PMID 32140312.
  22. ^Cau, Andrea (2024)."A Unified Framework for Predatory Dinosaur Macroevolution".Bollettino della Società Paleontologica Italiana.63 (1):1–19.doi:10.4435/BSPI.2024.08 (inactive 20 November 2024).ISSN 0375-7633.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  23. ^Zhou, Z.-H.; Wang, Y. (2017). "Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: Comparisons and implications".Paleoworld.26 (2): 241.doi:10.1016/j.palwor.2017.01.002.
  24. ^Sullivan, C.; Wang, Y.; Hone, D.W.E.; Wang, Y.; Xu, X.; Zhang, F. (2014). "The vertebrates of the Jurassic Daohugou Biota of northeastern China".Journal of Vertebrate Paleontology.34 (2):243–280.doi:10.1080/02724634.2013.787316.S2CID 84944844.
  25. ^Wang, Y.; Ken, S.; Zhang, W.; Zheng, S. (2006). "Biodiversity and palaeoclimate of the Middle Jurassic floras from the Tiaojishan Formation in western Liaoning, China".Progress in Natural Science.16 (1):222–230.doi:10.1080/10020070612330087.
  26. ^Zhang, Kuiyan; Yang, Ding; Ren, Dong (2006). "The first snipe fly (Diptera: Rhagionidae) from the Middle Jurassic of Inner Mongolia, China".Zootaxa.1134:51–57.doi:10.11646/zootaxa.1134.1.3.
  27. ^Xu, Liming; Wang, Min; Chen, Runsheng; Dong, Liping; Lin, Min; Xu, Xing; Tang, Jianrong; You, Hailu; Zhou, Guowu; Wang, Linchang; He, Wenxing; Li, Yujuan; Zhang, Chi; Zhou, Zhonghe (6 September 2023)."A new avialan theropod from an emerging Jurassic terrestrial fauna".Nature.621 (7978):336–343.doi:10.1038/s41586-023-06513-7.ISSN 1476-4687.PMID 37674081.S2CID 261581753.
Avemetatarsalia
Theropoda
Maniraptora
    • see below↓
Alvarezsauridae
Parvicursorinae
Ceratonykini
Mononykini
Therizinosauria
Therizinosauroidea
Therizinosauridae
Pennaraptora
Oviraptorosauria
Paraves
    • see below↓
Patagonykus puertai

Mononykus olecranus

Therizinosaurus cheloniformis
Scansoriopterygidae?
Anchiornithidae
Archaeopterygidae
Dromaeosauridae
Troodontidae
Jeholornithiformes
Omnivoropterygidae?
Confuciusornithidae
Jinguofortisidae
Ornithothoraces
Enantiornithes
Euornithes
    • see below↓
Ambopteryx longibrachium

Archaeopteryx lithographica

Confuciusornis sp.
Schizoouridae
Patagopterygiformes
Ambiortiformes
Hongshanornithidae
Songlingornithidae
Yanornithidae
Gansuidae?
Ichthyornithes
Hesperornithes
Hesperornithidae
Vegaviidae
Cimolopterygidae
Aves / Neornithes
    • see below↓
Patagopteryx deferrariisiIchthyornis dispar
Palaeognathae
Neognathae
Galloanserae
Anserimorphae
Pangalliformes
Incertae sedis
Dromornithidae
Gastornithiformes
Pelagornithidae
Asteriornis maastrichtensisDromornis stirtoni
Anchiornithidae
Retrieved from "https://en.wikipedia.org/w/index.php?title=Anchiornithidae&oldid=1267849270"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp