![]() | |
Native name | 全志 |
---|---|
Company type | Public |
SHE:300458 | |
Industry | Fabless semiconductors |
Founded | 2007; 18 years ago (2007) |
Headquarters | , |
Products | Integrated circuits |
Website | www |
Allwinner Technology Co., Ltd is a Chinesefabless semiconductor company specialized inmixed-signalsystems on a chips (SoC). The company is headquartered inZhuhai,Guangdong,China.
Since founded in 2007, Allwinner has released over fifteenSoC processors for use inAndroid-basedtablets,[1] as well assmartphones,over-the-air OTT boxes, video camera systems,car DVRs, and car media players.[2]
In 2012 and 2013, Allwinner was the number one supplier in terms of unit shipments of application processors for Android tablets worldwide.[3][4][5][6][7] For Q2 2014, Allwinner was reported by DigiTimes to be the third largest supplier to the Chinese market afterRockchip andMediaTek.[8]
A series processors are used for mobile applications, mainly referring to tablet application.[9]
In 2011, the company became an ARM processor licensee,[10] and subsequently announced a series ofARM Cortex-A8 powered mobile application processors, including A10, A13 and A10s, which were used in numeroustablets, and also inPC-on-a-stick andmedia center devices. They have also been adopted in free hardware projects like theCubieboard development board.
In December 2012, Allwinner announced the availability of twoARM Cortex-A7 MPCore powered products, the dual-core Allwinner A20 and quad-core Allwinner A31. Production of the A31 started in September 2012 and end products, mostly high-end tablets from Chinese manufacturers, appeared on the market in early 2013, including the Onda V972. Allwinner was the first to make this ARM processor core available in mass production.[citation needed]
In March 2013, Allwinner launched its quad-core Phablet processor A31s. Based on quad-core cortex-A7 CPU architecture, this processor allows 3G, 2G, LTE, WIFI, BT, FM, GPS, AGPS and NFC using a minimum of external components.[citation needed]
In October, 2013, Allwinner released its second dual-core A23, touted to be "The most efficient dual core processor" for tablets.[11] The A23's CPU frequency was intended to run up to 1.5 GHz.[12]
In June, 2014, Allwinner announced the A33 quad-core SoC that is pin compatible with Allwinner's A23. The new SoC features four Cortex-A7 cores with 256 KB L1 cache, 512 KB L2 cache and aMali-400 MP2 GPU. A new feature is the support of theOpenMAX API.[13] Allwinner has positioned the A33 for entry-level tablets, targeting quad-core tablets priced from $30 to $60, and in July 2014 announced that it had started mass production of the chip, which would supposedly sell for as low as $4 per unit.[14]
In April 2019, Allwinner announced the A50 28 nm quad-core SoC.[15] The A50 features four Cortex-A7 cores running up to 1.8 GHz with 512 KB L2 cache and aMali-400 MP2 GPU.
In June 2017, Allwinner announced the A63 28 nm quad-core SoC at APC 2017 Conference.[16] The A63 features four Cortex-A53 cores running up to 1.8 GHz with 512 KB L2 cache and aMali-T760 MP2 GPU with OpenGL ES 3.2 support. VPU with 4K/6K VP9, H.265, and H.264 4K @ 30 fps video decoder and H.264 HP encoder 1080P@30 fps
In October 2013, Allwinner disclosed its upcoming octa-coreA80 SoC, featuring four high-performanceARM Cortex-A15 and four efficient ARM Cortex-A7 CPU cores in abig.LITTLE configuration.[17]
On June 30, 2014, Chinese brand Onda officially released its octa-core Onda V989 tablet, which is based on Allwinner A80. This is the first Allwinner A80-based tablet that is available to consumers, priced at CNY 1099 (~US$177).[18]
In September 2014, Allwinner announced theAllwinner A83T, an octa-core tablet processor that packs eight highly energy-efficient Cortex-A7 cores that can run simultaneously at up to around 2.0 GHz. It also includes aPowerVR GPU. The first tablet with the chip was expected to hit the market in Q4 2014.[19]
In April 2019, Allwinner announced their roadmap for 2019 to 2020 feature the A100, A200, A300 and A301 SoC.[15] The Allwinner A200 was described as "AI blessing, computational power".[citation needed]
F series are processors based on Allwinner's melis OS, mainly used in smart video radios, video MP5, etc.[9]
From 2007 to 2011, Allwinner introduced itsF-series processors, including the F10, F13, F18, F20, F1E200, F1C100, and F20. This series runs Allwinner's in-house operating system Melis2.0, which is now mainly used in vehicle multimedia systems, E-ink readers, video intercom systems, and so on.[citation needed]
Sega'sGame Gear Micro uses the F1C200S as main CPU.
The H-series, introduced in 2014, are integrated application processors primarily targeted atOTT set-top box applications e.g. HDMI mini PCs, gaming boxes, etc.;[9]
Allwinner has launched the A80 octa-core OTT box solution, targeting at high-end OTT box market, and launched the Allwinner H8 octa-core processor for mid-range OTT boxes, and most recently launched the quad-core Allwinner H3 targeting the US$35 - $50 OTT box market.[20]
The R ("Real-Time") Series Chip is designed for low power applications where timing is critical and must be done at theedge rather than in thefog orcloud.[21] The chip also has built inredundancies to meet industrial and automotive standards for processing.[22]
The R Series Chip has been applicable to a number of different industries includingIndustrial Automation,Safe PLCs,Power Generation andDistribution,Healthcare and Automotive Technology.[22] The technology, specifically the R16 Chip, has also been utilised for robotic vacuums, Nintendo Classic Mini systems and smart speakers resulting from a longtermpartnership with theCogobuy Group's subsidiaryIngDan (硬蛋).[23]
Cogobuy's preparatory K-system was used as the basis to add integratedSLAM modules with Allwinner chip's.[24] The technical advantages andpatents Cogobuy held allowed for chip localisation of edge computing required for the AIroom mapping and cleaning.[25] The R40 and R16 technology has been implemented on a number ofBanana Pi models.[26][27] The R8 Chip was also used for "The World's First Nine Dollar Computer"Kickstarter project in 2015.[28]
The V-Series arevideo encoding processor targeting applications such assmart DVR,IP camera andsmart home applications. It is similar to the A series SoC, but adds support for functions such as digital watermarking, motion detection and video scaling, as well as a CBR/VBR bit rate control mode.[29]
The Allwinner SoC family includes A-series, which is intended for Android OS, and F-series, which is intended for the company's self-developed Melisoperating system.
The A-Series, including the A10, A20 and A31 SoCs, have a proprietary in-house designed multimedia co-processingDSP (Digital Signal Processing) processor technology for hardware accelerated video, image, and audio decoding, calledCedarX (with subprocessing called "CedarV" for video decoding and "CedarA" for audio decoding), able to decode 2160p 2D and 1080p 3D video. The main disadvantages with CedarX technology and associated libraries is that Allwinner's own CedarX proprietary libraries have no clear usage license, so even if the source code for some versions is available the terms-of-use is unknown in open source software, and there is noglue code for any other multimedia frameworks on Linux systems that could be used as a middle-ware, like for exampleOpenMAX orVAAPI.
The A-series are integrated application processors primarily targeting tablets as well as targeting mini PCs, development boards and TV boxes.[2]
SoC | Fab | CPU | GPU (Clock) | Video Decoder | Video Encoder | Package, Size (mm), Pitch (mm) | Application | Examples | |||
---|---|---|---|---|---|---|---|---|---|---|---|
ISA4K | μarch | Cores | L2 cache | ||||||||
A10 | 55 nm | ARMv7-A | Cortex-A8 | 1 | 256 KB | Mali-400 (300 MHz)[30] | 2160p | H.264 1080p @ 30 fps | BGA441, 19×19, 0.80 | Tablet, smart TV | List
|
A10s | BGA336, 14×14, 0.65 | HDMI Dongle | OLinuXino A10S | ||||||||
A13 | eLQFP176, 20×20 | Tablet, E-reader | List
| ||||||||
A20[31] | Cortex-A7 | 2 | 256 KB[32][33] | Mali-400 MP2 (350 MHz)[30] | BGA441, 19×19, 0.80 | Tablet, smart TV | List
| ||||
A23 | 40 nm | 1080p @ 60 fps multi-format | H.264 1080p @ 60 fps | BGA280, 14×14, 0.80 | Tablet | Kiano SlimTab 8 | |||||
A31 | 4 | 1 MB | PowerVR SGX544 MP2 (350 MHz)[30] | 2160p 4K×2K | BGA609, 18×18, 0.65 | Tablet, Smartphone, smart TV | List
| ||||
A31s | H.264 1080p @ 30 fps | BGA460, 18×18, 0.80 | Phablet, Tablet, smartphone, smart TV | ||||||||
A33[36][37] | 512 KB | Mali-400 MP2 (350 MHz)[30] | 1080p @ 60 fps multi-format | H.264 1080p @ 60 fps | BGA282, 14×14, 0.80 | Tablet | GoTab GT97X[38] | ||||
A40i | H.264 1080p @ 45 fps | BGA468, 16×16, 0.65 | Industrial control, Self-service terminal | Boardcon EMA40i[39] | |||||||
A80 Octa[40] | 28 nm HPM | big.LITTLE: Cortex-A15 +A7 | 8 | 2 MB + 512 KB | PowerVR G6230 (Rogue) (533 MHz)[30] | 4K×2K @30 fps, H.265/VP9 1080p @30 fps | H.264 HP/VP8 4K×2K @30 fps | FCBGA636, 19×19, 0.65 | Tablet, smart TV, TV box, mini PC | ||
A83T[19][43] | Cortex-A7 | 1 MB[44] | PowerVR SGX544 (700 MHz)[30] | 1080p @ 60 fps, H.264, HVEC MP/L5.2 | H.264 1080p @ 60 fps | FCBGA345, 14×14 | Tablet | InFocus CS1 A83 (C2107)[45] | |||
A50 | 28 nm HPC | Cortex-A7 | 4 | 512 KB | Mali-400 MP2 | 1080p @ 60 fps HEVC/H.264, 1080p @ 30 fps multi-format | H.264 1080p @ 60 fps | FBGA413, 12.3x12.8, 0.5 | Tablet | ||
A63 | 28 nm HPC | ARMv8-A | Cortex-A53 | 4 | 512 KB | Mali T760 | 4K @ 30 fps HEVC/VP9/H.264, 1080p @ 60 fps multi-format | H.264 1080p @ 30 fps | FCBGA463, 15×15, 0.65 | Tablet | |
A64[46] | 40 nm | ARMv8-A | Cortex-A53 | 4 | 512 KB | Mali-400 MP2 | H.264/H.265 | H.264 1080p @ 60 fps | BGA396, 15×15, 0.65 | Tablet, Laptop[47] | OLinuXino-A64,PINE64[48] |
A133 | 28 nm HPC | ARMv8-A | Cortex-A53 | 4 | 512 KB | PowerVR GE8300 | 4K @ 30 fps HEVC/H.264 | H.264 1080p @ 60 fps | LFBGA346, 12×12, 0.5 | Tablet |
The H-series, introduced in 2014, are primarily targeted atOTT set-top box applications.
SoC | Fab | CPU | GPU | Video Decoder | Video Encoder | Package | Application | Examples | |||
---|---|---|---|---|---|---|---|---|---|---|---|
ISA | μarch | Cores | L2 Cache | ||||||||
H2 | 40 nm | ARMv7-A | Cortex-A7 | 4 | ? | Mali-400 MP2 @ 600 MHz | 1080p @ 60 fps | H.264 1080p @ 30 fps | ? | OTT box, IoT, DIY boards | Orange PI Zero,NanoPi Duo, Banana Pi M2 Zero |
H3[49][50] | 4 | 512 KB | 1080p @ 60 fps, 4K H.265 @ 30 fps | FBGA347, 14 mm × 14 mm, 0.65 mm Pitch | Capcom Home Arcade[53], Zidoo X1,Tronsmart Draco H3, Orange Pi PC, NanoPi NEO, NanoPi Duo2, NanoPi R1[54] | ||||||
H8[55] | 28 nm HPC | 8 | ? | PowerVR SGX544 @ 700MHZ | 1080p @ 60 fps, 1080p H.265/VP9 @ 30 fps | H.264 1080p @ 60 fps | FCBGA345, 14 mm × 14 mm | Cubieboard 5 | |||
H64[56] | 40 nm | ARMv8-A | Cortex-A53 | 4 | ? | Mali-400 MP2 | H.264/H.265 | BGA396, 15 mm × 15 mm, 0.65 mm Pitch | Orange Pi Win, Orange Pi Win Plus | ||
H5[57] | 4 | 512 KB | Mali-450 MP6 | H.264/H.265 4k@30 fps VP8 1080p@60 fps | FBGA347, 14 mm × 14 mm, 0.65 mm Pitch | Orange Pi Zero Plus, Orange Pi PC2, Orange Pi Prime, NanoPi NEO2, NanoPi NEO Plus2,NanoPi Neo Core2 | |||||
H6 | 28 nm | 4 | 512 KB | Mali-T720 MP2 @600 MHz | H.265/HEVC 4K@60 fps H.264/AVC, VP9 4K@30 fpsVP6/VP8, 1080P@60 fps | H.264 BP/MP/HP@level 4.2 4K@30 fps | BGA451, 15 mm × 15 mm, 0.65 mm pitch | OTT, DVB and IPTV markets | Zidoo H6 Pro, Orange Pi One Plus, Orange Pi Lite 2, Orange Pi 3, PINE H64 model A and B, Boardcon EMH6 | ||
H616[58] | 4 | 512 KB | Mali-G31 MP2 | H.265 4K@60 fps or 6K@30 fps VP9, 4K@60 fpsVP8, 1080p@60 fps | H.264 BP/MP/HP 4K@25 fps | TFBGA284 14 mm × 12 mm,0.65 mm pitch | OTT, DVB and IPTV markets | Tanix TX6s, X96 Mate, Orange Pi Zero2 | |||
H618[59] | 1 MB | Orange Pi Zero3, T95Z Plus |
SoC | CPU | Memory | Video Decoder | Video Encoder | Package | OS | Application |
---|---|---|---|---|---|---|---|
F1C100 | ARM9 | SDR | 720p | N/A | LQFP128 | Melis 2.0 | CarMP5, Car Headrest, Visual Bombox, Visual Radio |
F1C200s | SIP | MJPEG 720 @ 30 fps | QFN88 | Melis, Linux | Game Gear Micro | ||
F1E200 | DDR | 1080p | N/A | eLQFP128 | Melis 2.0 | E-ink Reader,PMP | |
F10 | N/A | LQFP176 | Multimedia Box, HD Player | ||||
F13 | MPEG4 720p @ 30 fps | Car MP5 | |||||
F18 | LQFP216 | Visual Intercom System | |||||
F20 | DDR/DDR2 | H.264 1080p @ 30 fps | BGA400 | Car DVR, Multimedia Box, Mobile Karaoke |
SoC | CPU | GPU | Video Decoder | Video Encoder | Package | Application | Examples | |||
---|---|---|---|---|---|---|---|---|---|---|
ISA | μarch | Cores | L2 Cache | |||||||
R8[60][61] | ARMv7-A | Cortex-A8 | 1 | ? | Mali-400 MP2[62] | 1080p@30 fps | 720p@30 fps | eLQFP176 | IoT, Linux on the Stick, Smart Device | $9Next Thing Co.'sCHIP computer |
R16[63] | Cortex-A7 | 4 | 512 KB | 1080p@60 fps | 1080p@60 fps | BGA282 | IoT, Security Systems | NES Classic Edition,SNES Classic Edition[64] | ||
R40[65] | ? | FBGA468 | IoT, Security Systems | |||||||
R58[66] | 8 | ? | PowerVR SGX544 MP1 | 1080p@60 fps or 720p@120 fps | FCBGA345, 14 mm × 14 mm | Hybrid PC, Tablet, Multimedia Box, HD Player | ||||
R18 | ARMv8-A | Cortex-A53 | 4 | 512 KB | Mali-400 MP2 | ? | ? | ? | ? |
SoC | CPU | GPU | Video Decoder | Video Encoder | Package | Application | Examples | |||
---|---|---|---|---|---|---|---|---|---|---|
ISA | μarch | Cores | L2 Cache | |||||||
T2[67] | ARMv7-A | Cortex-A7 | 2 | ? | Mali-400 MP2 | 1080p@30 fps | 1080p@30 fps | FBGA441, 19 mm × 19 mm | In-Car Entertainment,SatNav | Nowada K1201 |
T3[68] | 4 | 512Kb | 1080p@45 fps | 1080p@45 fps | FBGA468, 16 mm × 16 mm | Ezonetronics CT-0008 | ||||
T8[69] | 8 | ? | PowerVR SGX544 MP1 | 1080p@60 fps | 1080p@60 fps | FCBGA345, 14 mm × 14 mm | Roadover T800 IX25 |
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(July 2017) (Learn how and when to remove this message) |
Allwinner Technology cooperates with around tenindependent design houses (IDHs) based in Shenzhen, China, who develop solutions based on Allwinner processors. They include iNet Technology, Worldchip Digital Technology, Sochip Technology, Topwise Communication, ChipHD Technology, Highcharacter Science and Technology, WITS Technology, Ococci Technology, Next Huawen Technology, and Qi Hao Digital Technology.
Apart from thewhite-box market, Allwinner processors can also be found in many brand products, includingHP,MSI,ZTE, NOOX, GoTab, Skyworth, MeLE,Polaroid, Micromax, Archos, Texet, Ainol, Onda, Ramos,Teclast, Ployer, Readboy, Noah, RF, Bmorn, Apical, Astro Queo, etc.
Due to the low price of the A10 SoC, the fact that it has a special rescue mode, and the early availability ofU-Boot and Linux kernel source (through several device makers), the Allwinner SoCs have been popular among open-source software developers. Since at least 2012 the linux-sunxi community has been one of the most active ARM SoC communities, and the slightly older hardware has only very minimal dependence on firmware or blobs.[70][71]
Since 2014, Allwinner is also an official member of theLinaro group, a nonprofit engineering consortium aimed at developing open-source software for theARM architecture.[72] However, it has been noted that most of the contributions that Allwinner has made to the Linaro group has been in the form of binary blobs, which is in clear violation of theGNU GPL license that the Linux kernel uses.[73]
Allwinner has been accused multiple times[74] of violating theGPL license by not providing Linux/Android kernel source code or U-Boot source, and by usingLGPL-licensed code within their binary blobs, etc.[75]
Allwinner has also been accused of including abackdoor in its published version of the Linux kernel.[76][77] The backdoor allows any installed app to have full root access to the system. While this may be a remnant of debugging during the development process, it presents a significant security risk to all devices using the Allwinner provided kernel.