Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Alkaloid

From Wikipedia, the free encyclopedia
Class of naturally occurring chemical compounds
This article is about the class of chemical compounds. For the pharmaceutical company, seeAlkaloid (company).

The first individual alkaloid,morphine, was isolated in 1804 from theopium poppy (Papaver somniferum).[1]

Alkaloids are a broad class ofnaturally occurringorganic compounds that contain at least onenitrogen atom. Some synthetic compounds of similar structure may also be termed alkaloids.[2]

Alkaloids are produced by a large variety of organisms includingbacteria,fungi,plants, andanimals.[3] They can be purified from crude extracts of these organisms byacid-base extraction, or solvent extractions followed by silica-gelcolumn chromatography.[4] Alkaloids have a wide range ofpharmacological activities includingantimalarial (e.g.quinine),antiasthma (e.g.ephedrine),anticancer (e.g.homoharringtonine),[5]cholinomimetic (e.g.galantamine),[6]vasodilatory (e.g.vincamine),antiarrhythmic (e.g.quinidine),analgesic (e.g.morphine),[7]antibacterial (e.g.chelerythrine),[8] andantihyperglycemic activities (e.g.berberine).[9][10] Many have found use intraditional ormodern medicine, or as starting points fordrug discovery. Other alkaloids possesspsychotropic (e.g.psilocin) andstimulant activities (e.g.cocaine,caffeine,nicotine,theobromine),[11] and have been used inentheogenic rituals or asrecreational drugs. Alkaloids can betoxic (e.g.atropine,tubocurarine).[12] Although alkaloids act on a diversity of metabolic systems in humans and other animals, they almost uniformly evoke abitter taste.[13]

The boundary between alkaloids and other nitrogen-containing natural compounds is not clear-cut.[14] Most alkaloids arebasic, although some have neutral[15] and even weaklyacidic properties.[16] In addition tocarbon,hydrogen andnitrogen, alkaloids may also containoxygen orsulfur. Rarer still, they may contain elements such asphosphorus,chlorine, andbromine.[17] Compounds likeamino acidpeptides,proteins,nucleotides,nucleic acid,amines, andantibiotics are usually not called alkaloids.[15] Natural compounds containing nitrogen in theexocyclic position (mescaline,serotonin,dopamine, etc.) are usually classified asamines rather than as alkaloids.[18] Some authors, however, consider alkaloids a special case of amines.[19][20][21]

Naming

[edit]
The article that introduced the concept of "alkaloid".

The name "alkaloids" (German:Alkaloide) was introduced in 1819 by German chemistCarl Friedrich Wilhelm Meissner, and is derived from late Latin rootalkali and the Greek-language suffix-οειδής -('like').[nb 1] However, the term came into wide use only after the publication of a review article, by Oscar Jacobsen in the chemical dictionary ofAlbert Ladenburg in the 1880s.[22][23]

There is no unique method for naming alkaloids.[24] Many individual names are formed by adding the suffix "ine" to the species or genus name.[25] For example,atropine is isolated from the plantAtropa belladonna;strychnine is obtained from the seed of theStrychnine tree (Strychnos nux-vomica L.).[17] Where several alkaloids are extracted from one plant their names are often distinguished by variations in the suffix: "idine", "anine", "aline", "inine" etc. There are also at least 86 alkaloids whose names contain the root "vin" because they are extracted fromvinca plants such asVinca rosea (Catharanthus roseus);[26] these are calledvinca alkaloids.[27][28][29]

History

[edit]
Friedrich Sertürner, the German chemist who first isolated morphine from opium.

Alkaloid-containing plants have been used by humans since ancient times for therapeutic and recreational purposes. For example, medicinal plants have been known inMesopotamia from about 2000 BC.[30] TheOdyssey of Homer referred to a gift given to Helen by the Egyptian queen, a drug bringing oblivion. It is believed that the gift was an opium-containing drug.[31] A Chinese book on houseplants written in 1st–3rd centuries BC mentioned a medical use ofephedra andopium poppies.[32] Also,coca leaves have been used by Indigenous South Americans since ancient times.[33]

Extracts from plants containing toxic alkaloids, such asaconitine andtubocurarine, were used since antiquity for poisoning arrows.[30]

Studies of alkaloids began in the 19th century. In 1804, the German chemistFriedrich Sertürner isolated from opium a "soporific principle" (Latin:principium somniferum), which he called "morphium", referring toMorpheus, the Greek god of dreams; in German and some other Central-European languages, this is still the name of the drug. The term "morphine", used in English and French, was given by the French physicistJoseph Louis Gay-Lussac.

A significant contribution to the chemistry of alkaloids in the early years of its development was made by the French researchersPierre Joseph Pelletier andJoseph Bienaimé Caventou, who discoveredquinine (1820) andstrychnine (1818). Several other alkaloids were discovered around that time, includingxanthine (1817),atropine (1819),caffeine (1820),coniine (1827),nicotine (1828),colchicine (1833),sparteine (1851), andcocaine (1860).[34] The development of the chemistry of alkaloids was accelerated by the emergence ofspectroscopic andchromatographic methods in the 20th century, so that by 2008 more than 12,000 alkaloids had been identified.[35]

The first complete synthesis of an alkaloid was achieved in 1886 by the German chemistAlbert Ladenburg. He producedconiine by reacting 2-methylpyridine withacetaldehyde andreducing the resulting 2-propenyl pyridine with sodium.[36][37]

Bufotenin, an alkaloid from some toads, contains anindole core, and is produced in living organisms from the amino acidtryptophan.

Classifications

[edit]
Thenicotine molecule contains bothpyridine (left) andpyrrolidine rings (right).

Compared with most other classes of natural compounds, alkaloids are characterized by a great structural diversity. There is no uniform classification.[38] Initially, when knowledge of chemical structures was lacking, botanical classification of the source plants was relied on. This classification is now considered obsolete.[17][39]

More recent classifications are based on similarity of the carbon skeleton (e.g.,indole-,isoquinoline-, andpyridine-like) or biochemical precursor (ornithine,lysine,tyrosine,tryptophan, etc.).[17] However, they require compromises in borderline cases;[38] for example,nicotine contains a pyridine fragment fromnicotinamide and apyrrolidine part from ornithine[40] and therefore can be assigned to both classes.[41]

Alkaloids are often divided into the following major groups:[42]

  1. "True alkaloids" containnitrogen in theheterocycle and originate fromamino acids.[43] Their characteristic examples areatropine,nicotine, andmorphine. This group also includes some alkaloids that besides the nitrogen heterocycle containterpene (e.g.,evonine[44]) or peptide fragments (e.g.ergotamine[45]). The piperidine alkaloidsconiine andconiceine may be regarded as true alkaloids (rather than pseudoalkaloids: see below)[46] although they do not originate from amino acids.[47]
  2. "Protoalkaloids", which containnitrogen (but not the nitrogen heterocycle) and also originate from amino acids.[43] Examples includemescaline,adrenaline andephedrine.
  3. Polyamine alkaloids – derivatives ofputrescine,spermidine, andspermine.
  4. Peptide andcyclopeptide alkaloids.[48]
  5. Pseudoalkaloids – alkaloid-like compounds that do not originate from amino acids.[49] This group includesterpene-like andsteroid-like alkaloids,[50] as well aspurine-like alkaloids such ascaffeine,theobromine,theacrine andtheophylline.[51] Some authors classifyephedrine andcathinone as pseudoalkaloids. Those originate from the amino acidphenylalanine, but acquire their nitrogen atom not from the amino acid but throughtransamination.[51][52]

Some alkaloids do not have the carbon skeleton characteristic of their group. So,galanthamine and homoaporphines do not containisoquinoline fragment, but are, in general, attributed to isoquinoline alkaloids.[53]

Main classes of monomeric alkaloids are listed in the table below:

ClassMajor groupsMain synthesis stepsExamples
Alkaloids with nitrogen heterocycles (true alkaloids)
Pyrrolidine derivatives[54]
Ornithine orarginineputrescine → N-methylputrescine → N-methyl-Δ1-pyrroline[55]Cuscohygrine,hygrine, hygroline, stachydrine[54][56]
Tropane derivatives[57]
Atropine group
Substitution in positions 3, 6 or 7
Ornithine orarginineputrescine → N-methylputrescine → N-methyl-Δ1-pyrroline[55]Atropine,scopolamine,hyoscyamine[54][57][58]
Cocaine group
Substitution in positions 2 and 3
Cocaine,ecgonine[57][59]
Pyrrolizidine derivatives[60]
Non-estersIn plants:ornithine orarginineputrescinehomospermidineretronecine[55]Retronecine, heliotridine, laburnine[60][61]
Complexesters of monocarboxylic acidsIndicine, lindelophin, sarracine[60]
Macrocyclic diestersPlatyphylline, trichodesmine[60]
1-aminopyrrolizidines (lolines)Infungi:L-proline +L-homoserineN-(3-amino-3-carboxypropyl)proline → norloline[62][63]Loline,N-formylloline,N-acetylloline[64]
Piperidine derivatives[65]
Lysinecadaverine → Δ1-piperideine[66]Sedamine, lobeline, anaferine,piperine[46][67]
Octanoic acid → coniceine →coniine[47]Coniine, coniceine[47]
Quinolizidine derivatives[68][69]
Lupinine groupLysinecadaverine → Δ1-piperideine[70]Lupinine, nupharidin[68]
Cytisine groupCytisine[68]
Sparteine groupSparteine,lupanine,anahygrine[68]
Matrine group.Matrine, oxymatrine, allomatridine[68][71][72]
Ormosanine groupOrmosanine, piptantine[68][73]
Indolizidine derivatives[74]
Lysine → δ-semialdehyde ofα-aminoadipic acidpipecolic acid → 1 indolizidinone[75]Swainsonine,castanospermine[76]
Pyridine derivatives[77][78]
Simple derivatives of pyridineNicotinic acid → dihydronicotinic acid → 1,2-dihydropyridine[79]Trigonelline,ricinine,arecoline[77][80]
Polycyclic noncondensing pyridine derivativesNicotine,nornicotine,anabasine, anatabine[77][80]
Polycyclic condensed pyridine derivativesActinidine,gentianine, pediculinine[81]
Sesquiterpene pyridine derivativesNicotinic acid,isoleucine[21]Evonine, hippocrateine, triptonine[78][79]
Isoquinoline derivatives and related alkaloids[82]
Simple derivatives of isoquinoline[83]Tyrosine orphenylalaninedopamine ortyramine (for alkaloids Amarillis)[84][85]Salsoline, lophocerine[82][83]
Derivatives of 1- and 3-isoquinolines[86]N-methylcoridaldine, noroxyhydrastinine[86]
Derivatives of 1- and 4-phenyltetrahydroisoquinolines[83]Cryptostilin[83][87]
Derivatives of 5-naftil-isoquinoline[88]Ancistrocladine[88]
Derivatives of 1- and 2-benzyl-izoquinolines[89]Papaverine,laudanosine, sendaverine
Cularine group[90]Cularine, yagonine[90]
Pavines and isopavines[91]Argemonine,amurensine[91]
Benzopyrrocolines[92]Cryptaustoline[83]
Protoberberines[83]Berberine,canadine, ophiocarpine, mecambridine, corydaline[93]
Phthalidisoquinolines[83]Hydrastine,narcotine (Noscapine)[94]
Spirobenzylisoquinolines[83]Fumaricine[91]
Ipecacuanha alkaloids[95]Emetine, protoemetine, ipecoside[95]
Benzophenanthridines[83]Sanguinarine, oxynitidine, corynoloxine[96]
Aporphines[83]Glaucine, coridine, liriodenine[97]
Proaporphines[83]Pronuciferine, glaziovine[83][92]
Homoaporphines[98]Kreysiginine, multifloramine[98]
Homoproaporphines[98]Bulbocodine[90]
Morphines[99]Morphine,codeine,thebaine,sinomenine,[100]heroin
Homomorphines[101]Kreysiginine, androcymbine[99]
Tropoloisoquinolines[83]Imerubrine[83]
Azofluoranthenes[83]Rufescine, imeluteine[102]
Amaryllis alkaloids[103]Lycorine, ambelline, tazettine,galantamine, montanine[104]
Erythrina alkaloids[87]Erysodine, erythroidine[87]
Phenanthrene derivatives[83]Atherosperminine[83][93]
Protopines[83]Protopine, oxomuramine, corycavidine[96]
Aristolactam[83]Doriflavin[83]
Oxazole derivatives[105]
Tyrosinetyramine[106]Annuloline, halfordinol, texaline, texamine[107]
Isoxazole derivatives
Ibotenic acidMuscimolIbotenic acid, Muscimol
Thiazole derivatives[108]
1-Deoxy-D-xylulose 5-phosphate (DOXP),tyrosine,cysteine[109]Nostocyclamide, thiostreptone[108][110]
Quinazoline derivatives[111]
3,4-Dihydro-4-quinazolone derivativesAnthranilic acid orphenylalanine orornithine[112]Febrifugine[113]
1,4-Dihydro-4-quinazolone derivativesGlycorine, arborine, glycosminine[113]
Pyrrolidine and piperidine quinazoline derivativesVazicine (peganine)[105]
Acridine derivatives[105]
Anthranilic acid[114]Rutacridone,acronicine[115][116]
Quinoline derivatives[117][118]
Simple derivatives of quinoline derivatives of2–quinolones and4-quinoloneAnthranilic acid → 3-carboxyquinoline[119]Cusparine,echinopsine, evocarpine[118][120][121]
Tricyclic terpenoidsFlindersine[118][122]
Furanoquinoline derivativesDictamnine, fagarine,skimmianine[118][123][124]
QuininesTryptophantryptaminestrictosidine (withsecologanin) → korinanteal →cinhoninon[85][119]Quinine,quinidine,cinchonine, cinhonidine[122]
Indole derivatives[100]
Non-isoprene indole alkaloids
Simple indole derivatives[125]Tryptophantryptamine or5-Hydroxytryptophan[126]Serotonin,psilocybin,dimethyltryptamine (DMT),bufotenin[127][128]
Simple derivatives ofβ-carboline[129]Harman,harmine,harmaline, eleagnine[125]
Pyrroloindole alkaloids[130]Physostigmine (eserine), etheramine, physovenine, eptastigmine[130]
Semiterpenoid indole alkaloids
Ergot alkaloids[100]Tryptophan → chanoclavine → agroclavine → elimoclavine →paspalic acidlysergic acid[130]Ergotamine, ergobasine, ergosine[131]
Monoterpenoid indole alkaloids
Corynanthe type alkaloids[126]Tryptophantryptaminestrictosidine (withsecologanin)[126]Ajmalicine, sarpagine, vobasine,ajmaline,yohimbine,reserpine,mitragynine,[132][133] groupstrychnine and (Strychninebrucine, aquamicine,vomicine[134])
Iboga-type alkaloids[126]Ibogamine,ibogaine,voacangine[126]
Aspidosperma-type alkaloids[126]Vincamine,vinca alkaloids,[27][135] vincotine, aspidospermine[136][137]
Imidazole derivatives[105]
Directly fromhistidine[138]Histamine,pilocarpine, pilosine,stevensine[105][138]
Purine derivatives[139]
Xanthosine (formed in purine biosynthesis) → 7 methylxantosine →7-methylxanthinetheobrominecaffeine[85]Caffeine,theobromine,theophylline,saxitoxin[140][141]
Alkaloids with nitrogen in the side chain (protoalkaloids)
β-Phenylethylamine derivatives[92]
Tyrosine orphenylalaninedioxyphenilalaninedopamineadrenaline andmescalinetyrosinetyramine phenylalanine → 1-phenylpropane-1,2-dione →cathinoneephedrine andpseudoephedrine[21][52][142]Tyramine,ephedrine,pseudoephedrine,mescaline,cathinone,catecholamines (adrenaline,noradrenaline,dopamine)[21][143]
Colchicine alkaloids[144]
Tyrosine orphenylalaninedopamineautumnalinecolchicine[145]Colchicine, colchamine[144]
Muscarine[146]
Glutamic acid → 3-ketoglutamic acid → muscarine (withpyruvic acid)[147]Muscarine, allomuscarine, epimuscarine, epiallomuscarine[146]
Benzylamine[148]
Phenylalanine withvaline,leucine orisoleucine[149]Capsaicin,dihydrocapsaicin, nordihydrocapsaicin,vanillylamine[148][150]
Polyamines alkaloids
Putrescine derivatives[151]
ornithineputrescinespermidinespermine[152]Paucine[151]
Spermidine derivatives[151]
Lunarine, codonocarpine[151]
Spermine derivatives[151]
Verbascenine, aphelandrine[151]
Peptide (cyclopeptide) alkaloids
Peptide alkaloids with a 13-membered cycle[48][153]Nummularine C typeFrom different amino acids[48]Nummularine C, Nummularine S[48]
Ziziphine typeZiziphine A, sativanine H[48]
Peptide alkaloids with a 14-membered cycle[48][153]Frangulanine typeFrangulanine, scutianine J[153]
Scutianine A typeScutianine A[48]
Integerrine typeIntegerrine, discarine D[153]
Amphibine F typeAmphibine F, spinanine A[48]
Amfibine B typeAmphibine B, lotusine C[48]
Peptide alkaloids with a 15-membered cycle[153]Mucronine A typeMucronine A[45][153]
Pseudoalkaloids (terpenes andsteroids)
Diterpenes[45]
Lycoctonine typeMevalonic acidIsopentenyl pyrophosphategeranyl pyrophosphate[154][155]Aconitine,delphinine[45][156]
Steroidal alkaloids[157]
Cholesterol,arginine[158]Solanidine,cyclopamine,batrachotoxin[159]

Properties

[edit]

Most alkaloids contain oxygen in their molecular structure; those compounds are usually colorless crystals at ambient conditions. Oxygen-free alkaloids, such asnicotine[160] orconiine,[36] are typically volatile, colorless, oily liquids.[161] Some alkaloids are colored, likeberberine (yellow) andsanguinarine (orange).[161]

Most alkaloids are weak bases, but some, such astheobromine andtheophylline, areamphoteric.[162] Many alkaloids dissolve poorly in water but readily dissolve inorganic solvents, such asdiethyl ether,chloroform or1,2-dichloroethane.Caffeine,[163]cocaine,[164]codeine[165] andnicotine[166] are slightly soluble in water (with a solubility of ≥1g/L), whereas others, includingmorphine[167] andyohimbine[168] are very slightly water-soluble (0.1–1 g/L). Alkaloids and acids form salts of various strengths. These salts are usually freely soluble in water andethanol and poorly soluble in most organic solvents. Exceptions includescopolamine hydrobromide, which is soluble in organic solvents, and the water-soluble quinine sulfate.[161]

Most alkaloids have a bitter taste or are poisonous when ingested. Alkaloid production in plants appeared to have evolved in response to feeding by herbivorous animals; however, some animals have evolved the ability to detoxify alkaloids.[169] Some alkaloids can produce developmental defects in the offspring of animals that consume but cannot detoxify the alkaloids. One example is the alkaloidcyclopamine, produced in the leaves ofcorn lily. During the 1950s, up to 25% of lambs born by sheep that had grazed on corn lily had serious facial deformations. These ranged from deformed jaws tocyclopia. After decades of research, in the 1980s, the compound responsible for these deformities was identified as the alkaloid 11-deoxyjervine, later renamed to cyclopamine.[170]

Distribution in nature

[edit]
Strychnine tree. Its seeds are rich instrychnine andbrucine.

Alkaloids aregenerated by various living organisms, especially byhigher plants – about 10 to 25% of those contain alkaloids.[171][172] Therefore, in the past the term "alkaloid" was associated with plants.[173]

The alkaloids content in plants is usually within a few percent and is inhomogeneous over the plant tissues. Depending on the type of plants, the maximum concentration is observed in the leaves (for example,black henbane),fruits orseeds (Strychnine tree), root (Rauvolfia serpentina) or bark (cinchona).[174] Furthermore, different tissues of the same plants may contain different alkaloids.[175]

Beside plants, alkaloids are found in certain types offungus, such aspsilocybin in the fruiting bodies of the genusPsilocybe, and in animals, such asbufotenin in the skin of some toads[24] and a number of insects, markedly ants.[176] Many marine organisms also contain alkaloids.[177] Someamines, such asadrenaline andserotonin, which play an important role in higher animals, are similar to alkaloids in their structure and biosynthesis and are sometimes called alkaloids.[178]

Extraction

[edit]
Crystals ofpiperine extracted fromblack pepper.

Because of the structural diversity of alkaloids, there is no single method of their extraction from natural raw materials.[179] Most methods exploit the property of most alkaloids to be soluble in organic solvents[4] but not in water, and the opposite tendency of their salts.

Most plants contain several alkaloids. Their mixture is extracted first and then individual alkaloids are separated.[180] Plants are thoroughly ground before extraction.[179][181] Most alkaloids are present in the raw plants in the form of salts of organic acids.[179] The extracted alkaloids may remain salts or change into bases.[180] Base extraction is achieved by processing the raw material with alkaline solutions and extracting the alkaloid bases with organic solvents, such as 1,2-dichloroethane, chloroform, diethyl ether or benzene. Then, the impurities are dissolved by weak acids; this converts alkaloid bases into salts that are washed away with water. If necessary, an aqueous solution of alkaloid salts is again made alkaline and treated with an organic solvent. The process is repeated until the desired purity is achieved.

In the acidic extraction, the raw plant material is processed by a weak acidic solution (e.g.,acetic acid in water, ethanol, or methanol). A base is then added to convert alkaloids to basic forms that are extracted with organic solvent (if the extraction was performed with alcohol, it is removed first, and the remainder is dissolved in water). The solution is purified as described above.[179][182]

Alkaloids are separated from their mixture using their different solubility in certain solvents and different reactivity with certain reagents or bydistillation.[183]

A number of alkaloids are identified frominsects, among which thefire antvenom alkaloids known assolenopsins have received greater attention from researchers.[184] These insect alkaloids can be efficiently extracted by solvent immersion of live fire ants[4] or by centrifugation of live ants[185] followed by silica-gel chromatography purification.[186] Tracking and dosing the extracted solenopsin ant alkaloids has been described as possible based on their absorbance peak around 232 nanometers.[187]

Biosynthesis

[edit]

Biological precursors of most alkaloids areamino acids, such asornithine,lysine,phenylalanine,tyrosine,tryptophan,histidine,aspartic acid, andanthranilic acid.[188]Nicotinic acid can be synthesized from tryptophan or aspartic acid. Ways of alkaloid biosynthesis are too numerous and cannot be easily classified.[85] However, there are a few typical reactions involved in the biosynthesis of various classes of alkaloids, including synthesis ofSchiff bases andMannich reaction.[188]

Synthesis of Schiff bases

[edit]
Main article:Schiff base

Schiff bases can be obtained by reacting amines with ketones or aldehydes.[189] These reactions are a common method of producing C=N bonds.[190]

In the biosynthesis of alkaloids, such reactions may take place within a molecule,[188] such as in the synthesis of piperidine:[41]

Mannich reaction

[edit]
Main article:Mannich reaction

An integral component of the Mannich reaction, in addition to an amine and acarbonyl compound, is acarbanion, which plays the role of the nucleophile in thenucleophilic addition to the ion formed by the reaction of the amine and the carbonyl.[190]

The Mannich reaction can proceed both intermolecularly and intramolecularly:[191][192]

Dimer alkaloids

[edit]

In addition to the described above monomeric alkaloids, there are alsodimeric, and eventrimeric andtetrameric alkaloids formed upon condensation of two, three, and four monomeric alkaloids. Dimeric alkaloids are usually formed from monomers of the same type through the following mechanisms:[193]

There are also dimeric alkaloids formed from two distinct monomers, such as thevinca alkaloidsvinblastine and vincristine,[27][135] which are formed from the coupling ofcatharanthine andvindoline.[194][195] The newersemi-synthetic chemotherapeutic agentvinorelbine is used in the treatment ofnon-small-cell lung cancer.[135][196] It is another derivative dimer of vindoline and catharanthine and is synthesised fromanhydrovinblastine,[197] starting either fromleurosine[198][199] or the monomers themselves.[135][195]

Biological role

[edit]

Alkaloids are among the most important and best-knownsecondary metabolites, i.e. biogenic substances not directly involved in the normalgrowth,development, orreproduction of the organism. Instead, they generally mediate ecologicalinteractions, which may produce a selective advantage for the organism by increasing itssurvivability orfecundity. In some cases their function, if any, remains unclear.[200] An early hypothesis, that alkaloids are the final products ofnitrogenmetabolism in plants, asurea anduric acid are in mammals, was refuted by the finding that their concentration fluctuates rather than steadily increasing.[14]

Most of the known functions of alkaloids are related to protection. For example,aporphine alkaloidliriodenine produced by thetulip tree protects it from parasitic mushrooms. In addition, the presence of alkaloids in the plant prevents insects andchordate animals from eating it. However, some animals are adapted to alkaloids and even use them in their own metabolism.[201] Such alkaloid-related substances asserotonin,dopamine andhistamine are importantneurotransmitters in animals. Alkaloids are also known to regulate plant growth.[202] One example of an organism that uses alkaloids for protection is theUtetheisa ornatrix, more commonly known as the ornate moth. Pyrrolizidine alkaloids render these larvae and adult moths unpalatable to many of their natural enemies like coccinelid beetles, green lacewings, insectivorous hemiptera and insectivorous bats.[203] Another example of alkaloids being utilized occurs in thepoison hemlock moth (Agonopterix alstroemeriana). This moth feeds on its highly toxic and alkaloid-rich host plantpoison hemlock (Conium maculatum) during its larval stage.A. alstroemeriana may benefit twofold from the toxicity of the naturally-occurring alkaloids, both through the unpalatability of the species to predators and through the ability ofA. alstroemeriana to recognizeConium maculatum as the correct location for oviposition.[204] Afire antvenom alkaloid known assolenopsin has been demonstrated to protect queens ofinvasive fire ants during the foundation of new nests, thus playing a central role in the spread of this pest ant species around the world.[205]

Applications

[edit]

In medicine

[edit]

Medical use of alkaloid-containing plants has a long history, and, thus, when the first alkaloids were isolated in the 19th century, they immediately found application in clinical practice.[206] Many alkaloids are still used in medicine, usually in the form of salts widely used including the following:[14][207]

AlkaloidAction
AjmalineAntiarrhythmic
EmetineAntiprotozoal agent,emesis
Ergot alkaloidsVasoconstriction,hallucinogenic,Uterotonic
GlaucineAntitussive
MorphineAnalgesic
NicotineStimulant,nicotinic acetylcholine receptor agonist
PhysostigmineInhibitor ofacetylcholinesterase
QuinidineAntiarrhythmic
QuinineAntipyretic,antimalarial
ReserpineAntihypertensive
TubocurarineMuscle relaxant
Vinblastine,vincristineAntitumor
VincamineVasodilating,antihypertensive
YohimbineStimulant,aphrodisiac
BerberineAntihyperglycaemic[10]

Many synthetic and semisynthetic drugs are structural modifications of the alkaloids, which were designed to enhance or change the primary effect of the drug and reduce unwanted side-effects.[208] For example,naloxone, anopioid receptorantagonist, is a derivative ofthebaine that is present inopium.[209]

In agriculture

[edit]

Prior to the development of a wide range of relatively low-toxic syntheticpesticides, some alkaloids, such as salts of nicotine andanabasine, were used asinsecticides. Their use was limited by their high toxicity to humans.[210]

Use as psychoactive drugs

[edit]

Preparations of plants and fungi containing alkaloids and their extracts, and later pure alkaloids, have long been used aspsychoactive substances.Cocaine,caffeine, andcathinone arestimulants of thecentral nervous system.[211][212]Mescaline and many indole alkaloids (such aspsilocybin,dimethyltryptamine andibogaine) havehallucinogenic effect.[213][214]Morphine andcodeine are strong narcotic pain killers.[215]

There are alkaloids that do not have strong psychoactive effect themselves, but areprecursors for semi-synthetic psychoactive drugs. For example,ephedrine andpseudoephedrine are used to producemethcathinone andmethamphetamine.[216]Thebaine is used in the synthesis of many painkillers such asoxycodone.

See also

[edit]

Explanatory notes

[edit]
  1. ^Meissner, W. (1819)."Über Pflanzenalkalien: II. Über ein neues Pflanzenalkali (Alkaloid)" [About Plant Alkalis: II. About a New Plant Alkali (Alkaloid)].Journal für Chemie und Physik.25:379–381. Archived fromthe original on 18 May 2023.In the penultimate sentence of his article, Meissner wrote: "Überhaupt scheint es mir auch angemessen, die bis jetzt bekannten Pflanzenstoffe nicht mit dem Namen Alkalien, sondern Alkaloide zu belegen, da sie doch in manchen Eigenschaften von den Alkalien sehr abweichen, sie würden daher in dem Abschnitt der Pflanzenchemie vor den Pflanzensäuren ihre Stelle finden." ["In general, it seems appropriate to me to impose on the currently known plant substances not the name 'alkalis' but 'alkaloids', since they differ greatly in some properties from the alkalis; among the chapters of plant chemistry, they would therefore find their place before plant acids (since 'Alkaloid' would precede 'Säure' (acid) but follow 'Alkalien')".]

Citations

[edit]
  1. ^Luch, Andreas (2009).Molecular, Clinical and Environmental Toxicology, Volume 1: Molecular Toxicology. Vol. 1. Springer. p. 20.ISBN 9783764383367.OCLC 1056390214.
  2. ^Lewis, Robert Alan (23 March 1998).Lewis' Dictionary of Toxicology. CRC Press. p. 51.ISBN 9781566702232.OCLC 1026521889.
  3. ^Roberts, M. F. (Margaret F.); Wink, Michael (1998).Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Boston: Springer US.ISBN 9781475729054.OCLC 851770197.
  4. ^abcGonçalves Paterson Fox, Eduardo; Russ Solis, Daniel; Delazari dos Santos, Lucilene; Aparecido dos Santos Pinto, Jose Roberto; Ribeiro da Silva Menegasso, Anally; Cardoso Maciel Costa Silva, Rafael; Sergio Palma, Mario; Correa Bueno, Odair; de Alcântara Machado, Ednildo (April 2013)."A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis)".Toxicon.65:5–8.Bibcode:2013Txcn...65....5G.doi:10.1016/j.toxicon.2012.12.009.hdl:11449/74946.PMID 23333648.
  5. ^Kittakoop P, Mahidol C, Ruchirawat S (2014)."Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation".Curr Top Med Chem.14 (2):239–252.doi:10.2174/1568026613666131216105049.PMID 24359196.
  6. ^Russo P, Frustaci A, Del Bufalo A, Fini M, Cesario A (2013). "Multitarget drugs of plants origin acting on Alzheimer's disease".Curr Med Chem.20 (13):1686–93.doi:10.2174/0929867311320130008.PMID 23410167.
  7. ^Raymond S. Sinatra; Jonathan S. Jahr; J. Michael Watkins-Pitchford (2010).The Essence of Analgesia and Analgesics. Cambridge University Press. pp. 82–90.ISBN 978-1139491983.
  8. ^Cushnie TP, Cushnie B, Lamb AJ (2014)."Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities".Int J Antimicrob Agents.44 (5):377–386.doi:10.1016/j.ijantimicag.2014.06.001.PMID 25130096.S2CID 205171789.
  9. ^Singh, Sukhpal; Bansal, Abhishek; Singh, Vikramjeet; Chopra, Tanya; Poddar, Jit (June 2022)."Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus".Journal of Diabetes & Metabolic Disorders.21 (1):941–950.doi:10.1007/s40200-021-00943-8.ISSN 2251-6581.PMC 9167359.PMID 35673446.
  10. ^abBehl, Tapan; Gupta, Amit; Albratty, Mohammed; Najmi, Asim; Meraya, Abdulkarim M.; Alhazmi, Hassan A.; Anwer, Md. Khalid; Bhatia, Saurabh; Bungau, Simona Gabriela (9 September 2022)."Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential".Molecules.27 (18): 5851.doi:10.3390/molecules27185851.ISSN 1420-3049.PMC 9501853.PMID 36144587.
  11. ^"Alkaloid". 18 December 2007.
  12. ^Robbers JE, Speedie MK, Tyler VE (1996). "Chapter 9: Alkaloids".Pharmacognosy and Pharmacobiotechnology. Philadelphia: Lippincott, Williams & Wilkins. pp. 143–185.ISBN 978-0683085006.
  13. ^Rhoades, David F (1979). "Evolution of Plant Chemical Defense against Herbivores". In Rosenthal, Gerald A.; Janzen, Daniel H (eds.).Herbivores: Their Interaction with Secondary Plant Metabolites. New York: Academic Press. p. 41.ISBN 978-0-12-597180-5.
  14. ^abcRobert A. MeyersEncyclopedia of Physical Science and Technology – Alkaloids, 3rd edition.ISBN 0-12-227411-3
  15. ^abIUPAC,Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "alkaloids".doi:10.1351/goldbook.A00220
  16. ^Manske, R. H. F. (12 May 2014).The Alkaloids: Chemistry and Physiology, Volume 8. Vol. 8. Saint Louis: Elsevier. pp. 683–695.ISBN 9781483222004.OCLC 1090491824.
  17. ^abcd"АЛКАЛОИДЫ - Химическая энциклопедия" [Alkaloids - Chemical Encyclopedia].www.xumuk.ru (in Russian). Retrieved18 May 2023.
  18. ^Cseke, Leland J.; Kirakosyan, Ara; Kaufman, Peter B.; Warber, Sara; Duke, James A.; Brielmann, Harry L. (19 April 2016).Natural Products from Plants. CRC Press. p. 30.ISBN 978-1-4200-0447-2.
  19. ^Johnson, Alyn William (1999).Invitation to Organic Chemistry. Jones & Bartlett Learning. p. 433.ISBN 978-0-7637-0432-2.
  20. ^Bansal, Raj K. (2003).A Textbook of Organic Chemistry. New Age International Limited. p. 644.ISBN 978-81-224-1459-2.
  21. ^abcdAniszewski, p. 110
  22. ^Hesse, pp. 1–3
  23. ^Ladenburg, Albert (1882).Handwörterbuch der chemie (in German). E. Trewendt. pp. 213–422.
  24. ^abHesse, p. 5
  25. ^The suffix "ine" is a Greek feminine patronymic suffix and means "daughter of"; hence, for example, "atropine" means "daughter of Atropa" (belladonna):"Development of Systematic Names for the Simple Alkanes".yale.edu. Archived fromthe original on 16 March 2012.
  26. ^Hesse, p. 7
  27. ^abcvan der Heijden, Robert; Jacobs, Denise I.; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert (2004). "TheCatharanthus alkaloids: Pharmacognosy and biotechnology".Current Medicinal Chemistry.11 (5):607–628.doi:10.2174/0929867043455846.PMID 15032608.
  28. ^Cooper, Raymond; Deakin, Jeffrey John (2016)."Africa's gift to the world".Botanical Miracles: Chemistry of Plants That Changed the World.CRC Press. pp. 46–51.ISBN 9781498704304.
  29. ^Raviña, Enrique (2011)."Vinca alkaloids".The evolution of drug discovery: From traditional medicines to modern drugs.John Wiley & Sons. pp. 157–159.ISBN 9783527326693.
  30. ^abAniszewski, p. 182
  31. ^Hesse, p. 338
  32. ^Hesse, p. 304
  33. ^Hesse, p. 350
  34. ^Hesse, pp. 313–316
  35. ^Begley, Natural Products in Plants.
  36. ^abКониин in theGreat Soviet Encyclopedia (in Russian) – via Great Scientific Library
  37. ^Hesse, p. 204
  38. ^abHesse, p. 11
  39. ^Orekhov, p. 6
  40. ^Aniszewski, p. 109
  41. ^abDewick, p. 307
  42. ^Hesse, p. 12
  43. ^abPlemenkov, p. 223
  44. ^Aniszewski, p. 108
  45. ^abcdHesse, p. 84
  46. ^abHesse, p. 31
  47. ^abcDewick, p. 381
  48. ^abcdefghiDimitris C. Gournelif; Gregory G. Laskarisb; Robert Verpoorte (1997). "Cyclopeptide alkaloids".Nat. Prod. Rep.14 (1):75–82.doi:10.1039/NP9971400075.PMID 9121730.
  49. ^Aniszewski, p. 11
  50. ^Plemenkov, p. 246
  51. ^abAniszewski, p. 12
  52. ^abDewick, p. 382
  53. ^Hesse, pp. 44, 53
  54. ^abcPlemenkov, p. 224
  55. ^abcAniszewski, p. 75
  56. ^Orekhov, p. 33
  57. ^abc"Chemical Encyclopedia: Tropan alkaloids".xumuk.ru.
  58. ^Hesse, p. 34
  59. ^Aniszewski, p. 27
  60. ^abcd"Chemical Encyclopedia: Pyrrolizidine alkaloids".xumuk.ru.
  61. ^Plemenkov, p. 229
  62. ^Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL (2005). "Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids".ChemBioChem.6 (6):1016–1022.doi:10.1002/cbic.200400327.PMID 15861432.S2CID 13461396.
  63. ^Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL (2006). "On the sequence of bond formation in loline alkaloid biosynthesis".ChemBioChem.7 (7):1078–1088.doi:10.1002/cbic.200600066.PMID 16755627.S2CID 34409048.
  64. ^Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007). "Loline alkaloids: currencies of mutualism".Phytochemistry.68 (7):980–996.Bibcode:2007PChem..68..980S.doi:10.1016/j.phytochem.2007.01.010.PMID 17346759.
  65. ^Plemenkov, p. 225
  66. ^Aniszewski, p. 95
  67. ^Orekhov, p. 80
  68. ^abcdef"Chemical Encyclopedia: Quinolizidine alkaloids".xumuk.ru.
  69. ^Saxton, Vol. 1, p. 93
  70. ^Aniszewski, p. 98
  71. ^Saxton, Vol. 1, p. 91
  72. ^Joseph P. Michael (2002). "Indolizidine and quinolizidine alkaloids".Nat. Prod. Rep.19 (5):458–475.doi:10.1039/b208137g.PMID 14620842.
  73. ^Saxton, Vol. 1, p. 92
  74. ^Dewick, p. 310
  75. ^Aniszewski, p. 96
  76. ^Aniszewski, p. 97
  77. ^abcPlemenkov, p. 227
  78. ^ab"Chemical Encyclopedia: pyridine alkaloids".xumuk.ru.
  79. ^abAniszewski, p. 107
  80. ^abAniszewski, p. 85
  81. ^Plemenkov, p. 228
  82. ^abHesse, p. 36
  83. ^abcdefghijklmnopqrst"Chemical Encyclopedia: isoquinoline alkaloids".xumuk.ru.
  84. ^Aniszewski, pp. 77–78
  85. ^abcdBegley, Alkaloid Biosynthesis
  86. ^abSaxton, Vol. 3, p. 122
  87. ^abcHesse, p. 54
  88. ^abHesse, p. 37
  89. ^Hesse, p. 38
  90. ^abcHesse, p. 46
  91. ^abcHesse, p. 50
  92. ^abcKenneth W. Bentley (1997)."β-Phenylethylamines and the isoquinoline alkaloids"(PDF).Nat. Prod. Rep.14 (4):387–411.doi:10.1039/NP9971400387.PMID 9281839.Archived(PDF) from the original on 9 October 2022.
  93. ^abHesse, p. 47
  94. ^Hesse, p. 39
  95. ^abHesse, p. 41
  96. ^abHesse, p. 49
  97. ^Hesse, p. 44
  98. ^abcSaxton, Vol. 3, p. 164
  99. ^abHesse, p. 51
  100. ^abcPlemenkov, p. 236
  101. ^Saxton, Vol. 3, p. 163
  102. ^Saxton, Vol. 3, p. 168
  103. ^Hesse, p. 52
  104. ^Hesse, p. 53
  105. ^abcdePlemenkov, p. 241
  106. ^Brossi, Vol. 35, p. 261
  107. ^Brossi, Vol. 35, pp. 260–263
  108. ^abPlemenkov, p. 242
  109. ^Begley, Cofactor Biosynthesis
  110. ^John R. Lewis (2000). "Amaryllidaceae, muscarine, imidazole, oxazole, thiazole and peptide alkaloids, and other miscellaneous alkaloids".Nat. Prod. Rep.17 (1):57–84.doi:10.1039/a809403i.PMID 10714899.
  111. ^"Chemical Encyclopedia: Quinazoline alkaloids".xumuk.ru.
  112. ^Aniszewski, p. 106
  113. ^abAniszewski, p. 105
  114. ^Richard B. Herbert; Herbert, Richard B.; Herbert, Richard B. (1999). "The biosynthesis of plant alkaloids and nitrogenous microbial metabolites".Nat. Prod. Rep.16 (2):199–208.doi:10.1039/a705734b.
  115. ^Plemenkov, pp. 231, 246
  116. ^Hesse, p. 58
  117. ^Plemenkov, p. 231
  118. ^abcd"Chemical Encyclopedia: Quinoline alkaloids".xumuk.ru.
  119. ^abAniszewski, p. 114
  120. ^Orekhov, p. 205
  121. ^Hesse, p. 55
  122. ^abPlemenkov, p. 232
  123. ^Orekhov, p. 212
  124. ^Aniszewski, p. 118
  125. ^abAniszewski, p. 112
  126. ^abcdefAniszewski, p. 113
  127. ^Hesse, p. 15
  128. ^Saxton, Vol. 1, p. 467
  129. ^Dewick, pp. 349–350
  130. ^abcAniszewski, p. 119
  131. ^Hesse, p. 29
  132. ^Hesse, pp. 23–26
  133. ^Saxton, Vol. 1, p. 169
  134. ^Saxton, Vol. 5, p. 210
  135. ^abcdKeglevich, Péter; Hazai, Laszlo; Kalaus, György; Szántay, Csaba (2012)."Modifications on the basic skeletons of vinblastine and vincristine".Molecules.17 (5):5893–5914.doi:10.3390/molecules17055893.PMC 6268133.PMID 22609781.
  136. ^Hesse, pp. 17–18
  137. ^Dewick, p. 357
  138. ^abAniszewski, p. 104
  139. ^Hesse, p. 72
  140. ^Hesse, p. 73
  141. ^Dewick, p. 396
  142. ^"PlantCyc Pathway: ephedrine biosynthesis". Archived fromthe original on 10 December 2011.
  143. ^Hesse, p. 76
  144. ^ab"Chemical Encyclopedia: colchicine alkaloids".xumuk.ru.
  145. ^Aniszewski, p. 77
  146. ^abHesse, p. 81
  147. ^Brossi, Vol. 23, p. 376
  148. ^abHesse, p. 77
  149. ^Brossi, Vol. 23, p. 268
  150. ^Brossi, Vol. 23, p. 231
  151. ^abcdefHesse, p. 82
  152. ^"Spermine Biosynthesis".www.qmul.ac.uk. Archived fromthe original on 13 November 2003.
  153. ^abcdefPlemenkov, p. 243
  154. ^"Chemical Encyclopedia: Terpenes".xumuk.ru.
  155. ^Begley, Natural Products: An Overview
  156. ^Atta-ur-Rahman and M. Iqbal Choudhary (1997). "Diterpenoid and steroidal alkaloids".Nat. Prod. Rep.14 (2):191–203.doi:10.1039/np9971400191.PMID 9149410.
  157. ^Hesse, p. 88
  158. ^Dewick, p. 388
  159. ^Plemenkov, p. 247
  160. ^Никотин in theGreat Soviet Encyclopedia (in Russian) – via Great Scientific Library
  161. ^abcGrinkevich, p. 131
  162. ^Spiller, Gene A. (23 April 2019).Caffeine. CRC Press. p. 140.ISBN 978-1-4200-5013-4.
  163. ^"Caffeine".DrugBank. Retrieved12 February 2013.
  164. ^"Cocaine".DrugBank. Retrieved12 February 2013.
  165. ^"Codeine".DrugBank. Retrieved12 February 2013.
  166. ^"Nicotine".DrugBank. Retrieved12 February 2013.
  167. ^"Morphine".DrugBank. Retrieved12 February 2013.
  168. ^"Yohimbine".DrugBank. Archived fromthe original on 30 January 2013. Retrieved12 February 2013.
  169. ^Fattorusso, p. 53
  170. ^Thomas Acamovic; Colin S. Stewart; T. W. Pennycott (2004).Poisonous plants and related toxins, Volume 2001. CABI. p. 362.ISBN 978-0-85199-614-1.
  171. ^Aniszewski, p. 13
  172. ^Orekhov, p. 11
  173. ^Hesse, p.4
  174. ^Grinkevich, pp. 122–123
  175. ^Orekhov, p. 12
  176. ^Touchard, Axel; Aili, Samira; Fox, Eduardo; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham; Dejean, Alain (20 January 2016)."The Biochemical Toxin Arsenal from Ant Venoms".Toxins.8 (1): 30.doi:10.3390/toxins8010030.ISSN 2072-6651.PMC 4728552.PMID 26805882.
  177. ^Fattorusso, p. XVII
  178. ^Aniszewski, pp. 110–111
  179. ^abcdHesse, p. 116
  180. ^abGrinkevich, p. 132
  181. ^Grinkevich, p. 5
  182. ^Grinkevich, pp. 132–134
  183. ^Grinkevich, pp. 134–136
  184. ^Fox, Eduardo Gonçalves Paterson (2016). "Venom Toxins of Fire Ants". In Gopalakrishnakone, P.; Calvete, Juan J. (eds.).Venom Genomics and Proteomics. Springer Netherlands. pp. 149–167.doi:10.1007/978-94-007-6416-3_38.ISBN 978-94-007-6415-6.
  185. ^Fox, Eduardo G. P.; Xu, Meng; Wang, Lei; Chen, Li; Lu, Yong-Yue (1 May 2018). "Speedy milking of fresh venom from aculeate hymenopterans".Toxicon.146:120–123.Bibcode:2018Txcn..146..120F.doi:10.1016/j.toxicon.2018.02.050.ISSN 0041-0101.PMID 29510162.
  186. ^Chen, Jian; Cantrell, Charles L.; Shang, Han-wu; Rojas, Maria G. (22 April 2009). "Piperideine Alkaloids from the Poison Gland of the Red Imported Fire Ant (Hymenoptera: Formicidae)".Journal of Agricultural and Food Chemistry.57 (8):3128–3133.doi:10.1021/jf803561y.ISSN 0021-8561.PMID 19326861.
  187. ^Fox, Eduardo G. P.; Xu, Meng; Wang, Lei; Chen, Li; Lu, Yong-Yue (1 June 2018)."Gas-chromatography and UV-spectroscopy of Hymenoptera venoms obtained by trivial centrifugation".Data in Brief.18:992–998.Bibcode:2018DIB....18..992F.doi:10.1016/j.dib.2018.03.101.ISSN 2352-3409.PMC 5996826.PMID 29900266.
  188. ^abcPlemenkov, p. 253
  189. ^Plemenkov, p. 254
  190. ^abDewick, p. 19
  191. ^Plemenkov, p. 255
  192. ^Dewick, p. 305
  193. ^Hesse, pp. 91–105
  194. ^Hirata, K.; Miyamoto, K.; Miura, Y. (1994)."Catharanthus roseus L. (Periwinkle): Production of Vindoline and Catharanthine in Multiple Shoot Cultures". In Bajaj, Y. P. S. (ed.).Biotechnology in Agriculture and Forestry 26. Medicinal and Aromatic Plants. Vol. VI.Springer-Verlag. pp. 46–55.ISBN 9783540563914.
  195. ^abGansäuer, Andreas; Justicia, José; Fan, Chun-An; Worgull, Dennis; Piestert, Frederik (2007)."Reductive C—C bond formation after epoxide opening via electron transfer". InKrische, Michael J. (ed.).Metal Catalyzed Reductive C—C Bond Formation: A Departure from Preformed Organometallic Reagents. Topics in Current Chemistry. Vol. 279.Springer Science & Business Media. pp. 25–52.doi:10.1007/128_2007_130.ISBN 9783540728795.
  196. ^Faller, Bryan A.; Pandi, Trailokya N. (2011)."Safety and efficacy of vinorelbine in the treatment of non-small cell lung cancer".Clinical Medicine Insights: Oncology.5:131–144.doi:10.4137/CMO.S5074.PMC 3117629.PMID 21695100.
  197. ^Ngo, Quoc Anh; Roussi, Fanny; Cormier, Anthony; Thoret, Sylviane; Knossow, Marcel; Guénard, Daniel; Guéritte, Françoise (2009). "Synthesis and biological evaluation ofVinca alkaloids and phomopsin hybrids".Journal of Medicinal Chemistry.52 (1):134–142.doi:10.1021/jm801064y.PMID 19072542.
  198. ^Hardouin, Christophe; Doris, Eric; Rousseau, Bernard; Mioskowski, Charles (2002). "Concise synthesis of anhydrovinblastine from leurosine".Organic Letters.4 (7):1151–1153.doi:10.1021/ol025560c.PMID 11922805.
  199. ^Morcillo, Sara P.; Miguel, Delia; Campaña, Araceli G.; Cienfuegos, Luis Álvarez de; Justicia, José; Cuerva, Juan M. (2014)."Recent applications of Cp2TiCl in natural product synthesis".Organic Chemistry Frontiers.1 (1):15–33.doi:10.1039/c3qo00024a.hdl:10481/47295.
  200. ^Aniszewski, p. 142
  201. ^Hesse, pp. 283–291
  202. ^Aniszewski, pp. 142–143
  203. ^W.E. Conner (2009).Tiger Moths and Woolly Bears—behaviour, ecology, and evolution of the Arctiidae. New York: Oxford University Press. pp. 1–10.ISBN 0195327373.
  204. ^Castells, Eva; Berenbaum, May R. (June 2006)."Laboratory Rearing of Agonopterix alstroemeriana, the Defoliating Poison Hemlock (Conium maculatum L.) Moth, and Effects of Piperidine Alkaloids on Preference and Performance".Environmental Entomology.35 (3):607–615.doi:10.1603/0046-225x-35.3.607.S2CID 45478867 – via ResearchGate.
  205. ^Fox, Eduardo G. P.; Wu, Xiaoqing; Wang, Lei; Chen, Li; Lu, Yong-Yue; Xu, Yijuan (1 February 2019). "Queen venom isosolenopsin A delivers rapid incapacitation of fire ant competitors".Toxicon.158:77–83.Bibcode:2019Txcn..158...77F.doi:10.1016/j.toxicon.2018.11.428.ISSN 0041-0101.PMID 30529381.S2CID 54481057.
  206. ^Hesse, p. 303
  207. ^Hesse, pp. 303–309
  208. ^Hesse, p. 309
  209. ^Dewick, p. 335
  210. ^Matolcsy, G.; Nádasy, M.; Andriska, V. (1 January 1989).Pesticide Chemistry. Elsevier. pp. 21–22.ISBN 978-0-08-087491-3.
  211. ^Veselovskaya, p. 75
  212. ^Hesse, p. 79
  213. ^Veselovskaya, p. 136
  214. ^Ibogaine: Proceedings from the First International Conference (The Alkaloids Book 56). Elsevier Science. 1950. p. 8.ISBN 978-0-12-469556-6.
  215. ^Veselovskaya, p. 6
  216. ^Veselovskaya, pp. 51–52

General and cited references

[edit]
  • Aniszewski, Tadeusz (2007).Alkaloids: secrets of life. Amsterdam:Elsevier.ISBN 978-0-444-52736-3.
  • Begley, Tadhg P. (2009).Encyclopedia of Chemical Biology. Vol. 10. Wiley. pp. 1569–1570.doi:10.1002/cbic.200900262.ISBN 978-0-471-75477-0.
  • Brossi, Arnold (1989).The Alkaloids: Chemistry and Pharmacology. Academic Press.
  • Dewick, Paul M. (2002).Medicinal Natural Products: A Biosynthetic Approach (Second ed.). Wiley.ISBN 978-0-471-49640-3.
  • Fattorusso, E.; Taglialatela-Scafati, O. (2008).Modern Alkaloids: Structure, Isolation, Synthesis and Biology. Wiley-VCH.ISBN 978-3-527-31521-5.
  • Grinkevich NI; Safronich LN, eds. (1983).The chemical analysis of medicinal plants (in Russian). Moscow: Vysshaya Shkola.
  • Hesse, Manfred (2002).Alkaloids: Nature's Curse or Blessing?. Wiley-VCH.ISBN 978-3-906390-24-6.
  • Knunyants, IL (1988).Chemical Encyclopedia. Soviet Encyclopedia.
  • Orekhov, AP (1955).Chemistry alkaloids (Acad. 2nd ed.). Moscow.{{cite book}}: CS1 maint: location missing publisher (link)
  • Plemenkov, VV (2001).Introduction to the Chemistry of Natural Compounds. Kazan.{{cite book}}: CS1 maint: location missing publisher (link)
  • Saxton, J. E. (1971).The Alkaloids: A Specialist Periodical Report. London: The Chemical Society.
  • Veselovskaya, N. B.; Kovalenko, A. E. (2000).Drugs. Moscow: Triada-X.
  • Wink, M (2009). "Mode of action and toxicology of plant toxins and poisonous plants".Mitt. Julius Kühn-Inst.421: 93–112x.

External links

[edit]
  • Media related toAlkaloids at Wikimedia Commons
  • Quotations related toAlkaloid at Wikiquote
Alkaloid groups
Indole
Phenethylamine
Purine
Pyridine
Pyrrolidine
Quinoline
Isoquinoline
Tropane
Terpenoid
Betaines
General
 
Alkaloids
Natural phenols
Monoterpenoids
Diterpenoids
Antibiotics
←Enzyme cofactors
 
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Alkaloid&oldid=1277642132"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp