Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Acoustic radiation force

From Wikipedia, the free encyclopedia

Acoustic radiation force (ARF) is a physical phenomenon resulting from the interaction of anacoustic wave with an obstacle placed along its path. Generally, the force exerted on the obstacle is evaluated by integrating theacoustic radiation pressure (due to the presence of the sonic wave) over its time-varying surface.

The magnitude of the force exerted by an acoustic plane wave at any given location can be calculated as:

|Frad|=2αIc{\displaystyle |F^{\rm {rad}}|={\frac {2\alpha I}{c}}}

where

The effect offrequency on acoustic radiation force is taken into account via intensity (higher pressures are more difficult to attain at higher frequencies) and absorption (higher frequencies have a higher absorption rate). As a reference, water has an acoustic absorption of 0.002dB/(MHz2cm).[3](page number?) Acoustic radiation forces on compressible particles such asbubbles are also known asBjerknes forces, and are generated through a different mechanism, which does not require soundabsorption orreflection.[4] Acoustic radiation forces can also be controlled through sub-wavelength patterning of the surface of the object.[5]

When a particle is exposed to an acoustic standing wave it will experience a time-averaged force known as the primary acoustic radiation force (Fpr{\displaystyle F_{pr}}).[6] In a rectangular microfluidic channel with coplanar walls which acts as aresonance chamber, the incoming acoustic wave can be approximated as aresonant,standing pressure wave of the form:

p1=pacoskz{\displaystyle p_{1}=p_{a}\cos {kz}}.

wherek{\displaystyle k} is thewave number.For acompressible, spherical andmicrometre-sized particle (of radiusa{\displaystyle a}) suspended in aninviscid fluid in a rectangular micro-channel with a 1D planar standing ultrasonic wave of wavelengthλ{\displaystyle \lambda }, the expression for the primary radiation force (at the far-field region whereaλ{\displaystyle a\ll \lambda })becomes then[7][8][9][6]:

Fpr1D=4πΦ(κ~,ρ~)a3kEacsin2kz{\displaystyle F_{pr}^{\rm {1D}}=4\pi \Phi ({\tilde {\kappa }},{\tilde {\rho }})a^{3}kE_{ac}\sin {2kz}}

Φ(κ~,ρ~)=13[5ρ~22ρ~+1κ~]{\displaystyle \Phi ({\tilde {\kappa }},{\tilde {\rho }})={1 \over 3}\left[{5{\tilde {\rho }}-2 \over 2{\tilde {\rho }}+1}-{\tilde {\kappa }}\right]}

Eac=14κfpa2=pa24ρfcf2{\displaystyle E_{\rm {ac}}={1 \over 4}\kappa _{f}p_{a}^{2}={p_{a}^{2} \over 4\rho _{f}c_{f}^{2}}}

where

See also

[edit]

References

[edit]
  1. ^Palmeri, Mark; Sharma, Amy; Bouchard, Richard; Nightingale, Roger;Nightingale, Kathryn (October 2005)."A finite-element method model of soft tissue response to impulsive acoustic radiation force".IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.52 (10):1699–1712.doi:10.1109/tuffc.2005.1561624.PMC 2818996.PMID 16382621.
  2. ^McAleavey, S. A.; Nightingale, K. R.; Trahey, G. E. (June 2003). "Estimates of echo correlation and measurement bias in acoustic radiation force impulse imaging".IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.50 (6):631–641.doi:10.1109/tuffc.2003.1209550.PMID 12839175.S2CID 12815598.(subscription required)
  3. ^Szabo, Thomas L. (2013).Diagnostic ultrasound imaging: inside out (2nd ed.). Academic press.ISBN 9780126801453.
  4. ^Leighton, T.G.; Walton, A.J.; Pickworth, M.J.W. (1990). "Primary Bjerknes forces".European Journal of Physics.11 (1): 47.Bibcode:1990EJPh...11...47L.doi:10.1088/0143-0807/11/1/009.S2CID 250881462.
  5. ^Stein, M., Keller, S., Luo, Y., Ilic, O. (2022)."Shaping contactless radiation forces through anomalous acoustic scattering".Nature Communications.13 (1): 6533.arXiv:2204.04137.Bibcode:2022NatCo..13.6533S.doi:10.1038/s41467-022-34207-7.ISSN 2041-1723.PMC 9626492.PMID 36319654.S2CID 248069447.
  6. ^abSaeidi, Davood; Saghafian, Mohsen; Haghjooy Javanmard, Shaghayegh; Hammarström, Björn; Wiklund, Martin (2019)."Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis".The Journal of the Acoustical Society of America.145 (6):3311–3319.Bibcode:2019ASAJ..145.3311S.doi:10.1121/1.5110303.ISSN 0001-4966.PMID 31255151.S2CID 195564901.
  7. ^Gor'kov, Lev Petrovich (1961).Forces acting on a small particle in an acoustic field within an ideal fluid (in Russian). Dokl. Akad. Nauk SSSR. pp. 140:1,88–91.
  8. ^Yosioka, K.; Kawasima, Y. (1955-01-01)."Acoustic radiation pressure on a compressible sphere".Acta Acustica United with Acustica.5 (3):167–173.
  9. ^Settnes, Mikkel; Bruus, Henrik (2012-01-30)."Forces acting on a small particle in an acoustical field in a viscous fluid".Physical Review E.85 (1): 016327.arXiv:1110.6037.Bibcode:2012PhRvE..85a6327S.doi:10.1103/PhysRevE.85.016327.ISSN 1539-3755.PMID 22400677.S2CID 35088059.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Acoustic_radiation_force&oldid=1278926100"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp