8-orthoplex Octacross | |
---|---|
![]() Orthogonal projection insidePetrie polygon | |
Type | Regular8-polytope |
Family | orthoplex |
Schläfli symbol | {36,4} {3,3,3,3,3,31,1} |
Coxeter-Dynkin diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7-faces | 256{36}![]() |
6-faces | 1024{35}![]() |
5-faces | 1792{34}![]() |
4-faces | 1792{33}![]() |
Cells | 1120{3,3}![]() |
Faces | 448{3}![]() |
Edges | 112 |
Vertices | 16 |
Vertex figure | 7-orthoplex |
Petrie polygon | hexadecagon |
Coxeter groups | C8, [36,4] D8, [35,1,1] |
Dual | 8-cube |
Properties | convex,Hanner polytope |
Ingeometry, an8-orthoplex or 8-cross polytope is a regular8-polytope with 16vertices, 112edges, 448 trianglefaces, 1120 tetrahedroncells, 17925-cells4-faces, 17925-faces, 10246-faces, and 2567-faces.
It has two constructive forms, the first being regular withSchläfli symbol {36,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,3,31,1} orCoxeter symbol511.
It is a part of an infinite family of polytopes, calledcross-polytopes ororthoplexes. Thedual polytope is an 8-hypercube, orocteract.
Thisconfiguration matrix represents the 8-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]
The diagonalf-vector numbers are derived through theWythoff construction, dividing the full group order of a subgroup order by removing individual mirrors.[3]
B8 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B7 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ( ) | f0 | 16 | 14 | 84 | 280 | 560 | 672 | 448 | 128 | {3,3,3,3,3,4} | B8/B7 = 2^8*8!/2^7/7! = 16 |
A1B6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | { } | f1 | 2 | 112 | 12 | 60 | 160 | 240 | 192 | 64 | {3,3,3,3,4} | B8/A1B6 = 2^8*8!/2/2^6/6! = 112 |
A2B5 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3} | f2 | 3 | 3 | 448 | 10 | 40 | 80 | 80 | 32 | {3,3,3,4} | B8/A2B5 = 2^8*8!/3!/2^5/5! = 448 |
A3B4 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3} | f3 | 4 | 6 | 4 | 1120 | 8 | 24 | 32 | 16 | {3,3,4} | B8/A3B4 = 2^8*8!/4!/2^4/4! = 1120 |
A4B3 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3} | f4 | 5 | 10 | 10 | 5 | 1792 | 6 | 12 | 8 | {3,4} | B8/A4B3 = 2^8*8!/5!/8/3! = 1792 |
A5B2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3} | f5 | 6 | 15 | 20 | 15 | 6 | 1792 | 4 | 4 | {4} | B8/A5B2 = 2^8*8!/6!/4/2 = 1792 |
A6A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3,3} | f6 | 7 | 21 | 35 | 35 | 21 | 7 | 1024 | 2 | { } | B8/A6A1 = 2^8*8!/7!/2 = 1024 |
A7 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3,3,3} | f7 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 256 | ( ) | B8/A7 = 2^8*8!/8! = 256 |
There are twoCoxeter groups associated with the 8-cube, oneregular,dual of theocteract with the C8 or [4,3,3,3,3,3,3] symmetry group, and a half symmetry with two copies of 7-simplex facets, alternating, with the D8 or [35,1,1] symmetry group. A lowest symmetry construction is based on a dual of an 8-orthotope, called an8-fusil.
Name | Coxeter diagram | Schläfli symbol | Symmetry | Order | Vertex figure |
---|---|---|---|---|---|
regular 8-orthoplex | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3,3,3,4} | [3,3,3,3,3,3,4] | 10321920 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Quasiregular 8-orthoplex | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3,3,31,1} | [3,3,3,3,3,31,1] | 5160960 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8-fusil | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 8{} | [27] | 256 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Cartesian coordinates for the vertices of an 8-cube, centered at the origin are
Everyvertex pair is connected by anedge, except opposites.
B8 | B7 | ||||
---|---|---|---|---|---|
![]() | ![]() | ||||
[16] | [14] | ||||
B6 | B5 | ||||
![]() | ![]() | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
![]() | ![]() | ![]() | |||
[8] | [6] | [4] | |||
A7 | A5 | A3 | |||
![]() | ![]() | ![]() | |||
[8] | [6] | [4] |
It is used in its alternated form511 with the8-simplex to form the521 honeycomb.